Timothy Klein, Logan H. Hodgskiss, Max Dreer, J. Colin Murrell, Matthew I. Hutchings, Christa Schleper, Laura E. Lehtovirta-Morley
{"title":"Distinct Patterns of Antibiotic Sensitivities in Ammonia-Oxidising Archaea","authors":"Timothy Klein, Logan H. Hodgskiss, Max Dreer, J. Colin Murrell, Matthew I. Hutchings, Christa Schleper, Laura E. Lehtovirta-Morley","doi":"10.1111/1462-2920.70063","DOIUrl":null,"url":null,"abstract":"<p>Ammonia-oxidising archaea (AOA) are important microorganisms contributing towards the nitrogen flux in the environment. Unlike archaea from other major phyla, genetic tools are yet to be developed for the AOA, and identification of antibiotic resistance markers for selecting mutants is required for a genetic system. The aim of this study was to test the effects of selected antibiotics (hygromycin B, neomycin, apramycin, puromycin, novobiocin) on pure cultures of three well studied AOA strains, ‘<i>Candidatus</i> Nitrosocosmicus franklandianus C13’, <i>Nitrososphaera viennensis</i> EN76 and <i>Nitrosopumilus maritimus</i> SCM1. Puromycin, hygromycin B and neomycin inhibited some but not all tested archaeal strains. All strains were resistant to apramycin and inhibited by novobiocin to various degrees. As <i>N. viennensis</i> EN76 was relatively more resistant to the tested antibiotics, a wider range of concentrations and compounds (chloramphenicol, trimethoprim, statins) was tested against this strain. <i>N. viennensis</i> EN76 was inhibited by trimethoprim, but not by chloramphenicol, and growth recovered within days in the presence of simvastatin, suggesting either degradation of, or spontaneous resistance against, this compound. This study highlights the physiological differences between different genera of AOA and has identified new candidate antibiotics for selective enrichment and the development of selectable markers for genetic systems in AOA.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70063","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70063","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ammonia-oxidising archaea (AOA) are important microorganisms contributing towards the nitrogen flux in the environment. Unlike archaea from other major phyla, genetic tools are yet to be developed for the AOA, and identification of antibiotic resistance markers for selecting mutants is required for a genetic system. The aim of this study was to test the effects of selected antibiotics (hygromycin B, neomycin, apramycin, puromycin, novobiocin) on pure cultures of three well studied AOA strains, ‘Candidatus Nitrosocosmicus franklandianus C13’, Nitrososphaera viennensis EN76 and Nitrosopumilus maritimus SCM1. Puromycin, hygromycin B and neomycin inhibited some but not all tested archaeal strains. All strains were resistant to apramycin and inhibited by novobiocin to various degrees. As N. viennensis EN76 was relatively more resistant to the tested antibiotics, a wider range of concentrations and compounds (chloramphenicol, trimethoprim, statins) was tested against this strain. N. viennensis EN76 was inhibited by trimethoprim, but not by chloramphenicol, and growth recovered within days in the presence of simvastatin, suggesting either degradation of, or spontaneous resistance against, this compound. This study highlights the physiological differences between different genera of AOA and has identified new candidate antibiotics for selective enrichment and the development of selectable markers for genetic systems in AOA.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens