Achilles Tendon Surgical Repair Partially Restores Early Plantar Flexor Structure and Function in a Rat Model

IF 2.1 3区 医学 Q2 ORTHOPEDICS
Ahmad Hammo, Liala Sofi, Lorraine A. T. Boakye, Josh R. Baxter
{"title":"Achilles Tendon Surgical Repair Partially Restores Early Plantar Flexor Structure and Function in a Rat Model","authors":"Ahmad Hammo,&nbsp;Liala Sofi,&nbsp;Lorraine A. T. Boakye,&nbsp;Josh R. Baxter","doi":"10.1002/jor.26041","DOIUrl":null,"url":null,"abstract":"<p>Achilles tendon ruptures significantly impair long-term patient function, with two-thirds of patients experiencing persistent functional deficits. Although nonsurgical treatment has gained popularity due to its perceived lower risk of complications, the specific effects of this approach on tendon healing, muscle function, and overall performance remain poorly understood. Directly comparing surgical and nonsurgical treatment options in a clinical population is challenging given the diverse nature of the patient population. Preclinical models are essential to isolate the mechanisms underlying these treatments, enabling a detailed examination of the structural and functional outcomes that are difficult to assess in human studies. Here, we surgically induced Achilles tendon ruptures in 20 adult male Sprague Dawley rats and repaired the rupture in half of these animals. Then, functional outcomes were assessed by measuring plantar flexor torque across the ankle's range of motion using a custom-developed small animal dynamometer, and structural changes were evaluated through measurements of Achilles tendon elongation and plantar flexor muscle mass. We found that surgical treatment led to 11%–35% increased functional plantar flexor torque outcomes compared to nonsurgical treatment. Additionally, plantar flexor muscle mass decreased by 21% in nonsurgically treated animals compared to only 12% in the surgically treated group. Our results suggest that surgically repairing a tendon rupture restores plantar flexor function more effectively than nonsurgical treatment; however, persistent functional deficits in both groups indicate that enhanced rehabilitation strategies are necessary for full functional restoration.</p>","PeriodicalId":16650,"journal":{"name":"Journal of Orthopaedic Research®","volume":"43 4","pages":"739-745"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jor.26041","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Research®","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jor.26041","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Achilles tendon ruptures significantly impair long-term patient function, with two-thirds of patients experiencing persistent functional deficits. Although nonsurgical treatment has gained popularity due to its perceived lower risk of complications, the specific effects of this approach on tendon healing, muscle function, and overall performance remain poorly understood. Directly comparing surgical and nonsurgical treatment options in a clinical population is challenging given the diverse nature of the patient population. Preclinical models are essential to isolate the mechanisms underlying these treatments, enabling a detailed examination of the structural and functional outcomes that are difficult to assess in human studies. Here, we surgically induced Achilles tendon ruptures in 20 adult male Sprague Dawley rats and repaired the rupture in half of these animals. Then, functional outcomes were assessed by measuring plantar flexor torque across the ankle's range of motion using a custom-developed small animal dynamometer, and structural changes were evaluated through measurements of Achilles tendon elongation and plantar flexor muscle mass. We found that surgical treatment led to 11%–35% increased functional plantar flexor torque outcomes compared to nonsurgical treatment. Additionally, plantar flexor muscle mass decreased by 21% in nonsurgically treated animals compared to only 12% in the surgically treated group. Our results suggest that surgically repairing a tendon rupture restores plantar flexor function more effectively than nonsurgical treatment; however, persistent functional deficits in both groups indicate that enhanced rehabilitation strategies are necessary for full functional restoration.

Abstract Image

跟腱手术修复可部分恢复大鼠模型的早期跖屈肌结构和功能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Orthopaedic Research®
Journal of Orthopaedic Research® 医学-整形外科
CiteScore
6.10
自引率
3.60%
发文量
261
审稿时长
3-6 weeks
期刊介绍: The Journal of Orthopaedic Research is the forum for the rapid publication of high quality reports of new information on the full spectrum of orthopaedic research, including life sciences, engineering, translational, and clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信