Yonghao Zhou, Kun He, Xiewen Hu, Xueqiang Gong, Tao Jin, Zhanglei Wu, Yutian Zhong
{"title":"Post-Wildfire Soil Properties Changes: Insights Into Hillslope Erosion After the March 2024 Yajiang Fire","authors":"Yonghao Zhou, Kun He, Xiewen Hu, Xueqiang Gong, Tao Jin, Zhanglei Wu, Yutian Zhong","doi":"10.1029/2024JF008115","DOIUrl":null,"url":null,"abstract":"<p>Soil property changes influence material transport from hillslopes to channels after the wildfire and may indirectly trigger debris flow initiation. This study investigates post-fire soil property evolution and its role in hillslope erosion following the 15 March 2024 Yajiang Fire, integrating field measurements with laboratory simulations to quantify temperature- and duration-dependent soil changes and their controls. Results demonstrate that wildfire-driven soil organic matter alteration is governed predominantly by peak heating temperature and not exposure duration. Post-fire soil profiles are stratified into three thermal impact zones: (a) a high-temperature zone (>600°C), characterized by complete organic matter combustion; (b) a water-repellent (WR) zone (100–600°C), subdivided into a highly WR layer, an aggregate stability (AS)-enhancement layer, and a low WR layer; and (c) an unaffected zone (<100°C). The high-temperature zone and highly WR layer, mobilized by wind and gravity, accumulate in channels as dry ravel deposits, forming the primary source of immediate post-fire debris flows. The AS-enhancement layer, exhibiting improved aggregate stability, temporarily mitigates raindrop splash and interrill erosion of underlying soils prior to the first post-fire rainfall event. However, this layer delays but does not prevent deeper soil mobilization during subsequent intense runoff. These findings clarify temperature thresholds controlling post-fire soil zonation, highlight mechanisms linking soil property changes to debris flow initiation, and provide valuable data on post-fire hillslope erosion processes.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF008115","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Soil property changes influence material transport from hillslopes to channels after the wildfire and may indirectly trigger debris flow initiation. This study investigates post-fire soil property evolution and its role in hillslope erosion following the 15 March 2024 Yajiang Fire, integrating field measurements with laboratory simulations to quantify temperature- and duration-dependent soil changes and their controls. Results demonstrate that wildfire-driven soil organic matter alteration is governed predominantly by peak heating temperature and not exposure duration. Post-fire soil profiles are stratified into three thermal impact zones: (a) a high-temperature zone (>600°C), characterized by complete organic matter combustion; (b) a water-repellent (WR) zone (100–600°C), subdivided into a highly WR layer, an aggregate stability (AS)-enhancement layer, and a low WR layer; and (c) an unaffected zone (<100°C). The high-temperature zone and highly WR layer, mobilized by wind and gravity, accumulate in channels as dry ravel deposits, forming the primary source of immediate post-fire debris flows. The AS-enhancement layer, exhibiting improved aggregate stability, temporarily mitigates raindrop splash and interrill erosion of underlying soils prior to the first post-fire rainfall event. However, this layer delays but does not prevent deeper soil mobilization during subsequent intense runoff. These findings clarify temperature thresholds controlling post-fire soil zonation, highlight mechanisms linking soil property changes to debris flow initiation, and provide valuable data on post-fire hillslope erosion processes.