Post-Wildfire Soil Properties Changes: Insights Into Hillslope Erosion After the March 2024 Yajiang Fire

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Yonghao Zhou, Kun He, Xiewen Hu, Xueqiang Gong, Tao Jin, Zhanglei Wu, Yutian Zhong
{"title":"Post-Wildfire Soil Properties Changes: Insights Into Hillslope Erosion After the March 2024 Yajiang Fire","authors":"Yonghao Zhou,&nbsp;Kun He,&nbsp;Xiewen Hu,&nbsp;Xueqiang Gong,&nbsp;Tao Jin,&nbsp;Zhanglei Wu,&nbsp;Yutian Zhong","doi":"10.1029/2024JF008115","DOIUrl":null,"url":null,"abstract":"<p>Soil property changes influence material transport from hillslopes to channels after the wildfire and may indirectly trigger debris flow initiation. This study investigates post-fire soil property evolution and its role in hillslope erosion following the 15 March 2024 Yajiang Fire, integrating field measurements with laboratory simulations to quantify temperature- and duration-dependent soil changes and their controls. Results demonstrate that wildfire-driven soil organic matter alteration is governed predominantly by peak heating temperature and not exposure duration. Post-fire soil profiles are stratified into three thermal impact zones: (a) a high-temperature zone (&gt;600°C), characterized by complete organic matter combustion; (b) a water-repellent (WR) zone (100–600°C), subdivided into a highly WR layer, an aggregate stability (AS)-enhancement layer, and a low WR layer; and (c) an unaffected zone (&lt;100°C). The high-temperature zone and highly WR layer, mobilized by wind and gravity, accumulate in channels as dry ravel deposits, forming the primary source of immediate post-fire debris flows. The AS-enhancement layer, exhibiting improved aggregate stability, temporarily mitigates raindrop splash and interrill erosion of underlying soils prior to the first post-fire rainfall event. However, this layer delays but does not prevent deeper soil mobilization during subsequent intense runoff. These findings clarify temperature thresholds controlling post-fire soil zonation, highlight mechanisms linking soil property changes to debris flow initiation, and provide valuable data on post-fire hillslope erosion processes.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF008115","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil property changes influence material transport from hillslopes to channels after the wildfire and may indirectly trigger debris flow initiation. This study investigates post-fire soil property evolution and its role in hillslope erosion following the 15 March 2024 Yajiang Fire, integrating field measurements with laboratory simulations to quantify temperature- and duration-dependent soil changes and their controls. Results demonstrate that wildfire-driven soil organic matter alteration is governed predominantly by peak heating temperature and not exposure duration. Post-fire soil profiles are stratified into three thermal impact zones: (a) a high-temperature zone (>600°C), characterized by complete organic matter combustion; (b) a water-repellent (WR) zone (100–600°C), subdivided into a highly WR layer, an aggregate stability (AS)-enhancement layer, and a low WR layer; and (c) an unaffected zone (<100°C). The high-temperature zone and highly WR layer, mobilized by wind and gravity, accumulate in channels as dry ravel deposits, forming the primary source of immediate post-fire debris flows. The AS-enhancement layer, exhibiting improved aggregate stability, temporarily mitigates raindrop splash and interrill erosion of underlying soils prior to the first post-fire rainfall event. However, this layer delays but does not prevent deeper soil mobilization during subsequent intense runoff. These findings clarify temperature thresholds controlling post-fire soil zonation, highlight mechanisms linking soil property changes to debris flow initiation, and provide valuable data on post-fire hillslope erosion processes.

野火后土壤特性的变化:2024 年 3 月雅江火灾后山坡侵蚀的启示
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信