Interlaboratory Performance Study of Cyanobacteria DNA Reference Materials Using a qPCR Format for Monitoring Cyanobacterial Blooms

Leonardo B. Pinheiro, Mark Van Asten, Luminita Antin, Hunter Adams, Judy Y. Qiu, Mary Robinson, Suzane DeLorenzo, Robert Holmes, Megan Hurd, Rueyjing Tang, Kale Clausen, Kristin Greenwood, Rahana Sudhi, Paul Wright, Konstanze Steiner, Anne Gérard, Somanath Bhat, Anna Baoutina, Kerry Emslie
{"title":"Interlaboratory Performance Study of Cyanobacteria DNA Reference Materials Using a qPCR Format for Monitoring Cyanobacterial Blooms","authors":"Leonardo B. Pinheiro,&nbsp;Mark Van Asten,&nbsp;Luminita Antin,&nbsp;Hunter Adams,&nbsp;Judy Y. Qiu,&nbsp;Mary Robinson,&nbsp;Suzane DeLorenzo,&nbsp;Robert Holmes,&nbsp;Megan Hurd,&nbsp;Rueyjing Tang,&nbsp;Kale Clausen,&nbsp;Kristin Greenwood,&nbsp;Rahana Sudhi,&nbsp;Paul Wright,&nbsp;Konstanze Steiner,&nbsp;Anne Gérard,&nbsp;Somanath Bhat,&nbsp;Anna Baoutina,&nbsp;Kerry Emslie","doi":"10.1002/aws2.70018","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Digital PCR (dPCR) has increasingly been used as a primary measurement method for the characterization of nucleic acid reference materials. Nucleic acid reference materials are particularly useful when used for the validation and calibration of quantitative PCR (qPCR). In this study, we describe the development and characterization of Cyanobacteria DNA reference materials (RM) using dPCR. An international interlaboratory study involving 14 laboratories was conducted using the Cyanobacteria DNA RM in combination with a lyophilized PCR reagent designed for the monitoring of Cyanobacteria bloom events. Of the 55 scored study results obtained using qPCR-based techniques, 62% were within the 8% relative expanded uncertainty based on dPCR measurements, while 100% of the study results returned satisfactory <i>z</i> scores calculated using a set performance coefficient of variation equivalent to one Ct value. The study participants' results indicate that the cyanobacteria DNA RM is fit for the purpose of method validation and quality control of the qPCR format used for monitoring toxic cyanobacteria algae bloom events. Most importantly, the study results demonstrated that the use of standardized reagents combined with highly characterized nucleic acid RMs allows qPCR-based DNA quantification technology to reach levels of accuracy and reproducibility comparable to those achieved with digital PCR technology.</p>\n </div>","PeriodicalId":101301,"journal":{"name":"AWWA water science","volume":"7 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AWWA water science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aws2.70018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Digital PCR (dPCR) has increasingly been used as a primary measurement method for the characterization of nucleic acid reference materials. Nucleic acid reference materials are particularly useful when used for the validation and calibration of quantitative PCR (qPCR). In this study, we describe the development and characterization of Cyanobacteria DNA reference materials (RM) using dPCR. An international interlaboratory study involving 14 laboratories was conducted using the Cyanobacteria DNA RM in combination with a lyophilized PCR reagent designed for the monitoring of Cyanobacteria bloom events. Of the 55 scored study results obtained using qPCR-based techniques, 62% were within the 8% relative expanded uncertainty based on dPCR measurements, while 100% of the study results returned satisfactory z scores calculated using a set performance coefficient of variation equivalent to one Ct value. The study participants' results indicate that the cyanobacteria DNA RM is fit for the purpose of method validation and quality control of the qPCR format used for monitoring toxic cyanobacteria algae bloom events. Most importantly, the study results demonstrated that the use of standardized reagents combined with highly characterized nucleic acid RMs allows qPCR-based DNA quantification technology to reach levels of accuracy and reproducibility comparable to those achieved with digital PCR technology.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信