Qualitative Analysis for a Fourth-Order Wave Equation With Exponential-Type Nonlinearity

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Yunlong Gao, Chunyou Sun, Kaibin Zhang
{"title":"Qualitative Analysis for a Fourth-Order Wave Equation With Exponential-Type Nonlinearity","authors":"Yunlong Gao,&nbsp;Chunyou Sun,&nbsp;Kaibin Zhang","doi":"10.1111/sapm.70034","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper is concerned with the properties of solutions to the following fourth-order wave equation with exponential-type nonlinearity:\n\n </p><div><span><!--FIGURE--><span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>u</mi>\n <mrow>\n <mi>t</mi>\n <mi>t</mi>\n </mrow>\n </msub>\n <mo>+</mo>\n <msup>\n <mi>Δ</mi>\n <mn>2</mn>\n </msup>\n <mi>u</mi>\n <mo>+</mo>\n <mi>u</mi>\n <mo>+</mo>\n <mi>ω</mi>\n <msup>\n <mi>Δ</mi>\n <mn>2</mn>\n </msup>\n <msub>\n <mi>u</mi>\n <mi>t</mi>\n </msub>\n <mo>+</mo>\n <mi>μ</mi>\n <msub>\n <mi>u</mi>\n <mi>t</mi>\n </msub>\n <mo>=</mo>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n </mrow>\n <annotation>$$\\begin{equation*} {u_{tt}} + {\\Delta ^2}u + u + \\omega {\\Delta ^2}{u_t} + \\mu {u_t} = f(u), \\end{equation*}$$</annotation>\n </semantics></math></span><span></span></div>where the exponential nonlinearity <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> is classified as either subcritical growth or critical growth at infinity, based on the Adams-type inequality. By utilizing the potential well theory and Adams-type inequality, we first prove the existence, stability, and blow-up of solutions at critical energy <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mo>(</mo>\n <msub>\n <mi>t</mi>\n <mn>0</mn>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mi>d</mi>\n </mrow>\n <annotation>$E(t_0)=d$</annotation>\n </semantics></math>. Subsequently, when <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mo>&gt;</mo>\n <mo>−</mo>\n <mi>ω</mi>\n <msub>\n <mi>λ</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation>$\\mu &gt;-\\omega \\lambda _1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> is subcritical, we provide a sufficient condition for finite time blow-up with arbitrarily positive initial energy, which permits the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^2$</annotation>\n </semantics></math>-inner product of the initial displacement and the initial velocity to be negative. The upper bounds of the blow-up time are then estimated via the concavity method. Furthermore, when <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> is critical, we also establish a criterion for finite time blow-up with negative initial energy. Finally, in the specific case where <span></span><math>\n <semantics>\n <mrow>\n <mi>ω</mi>\n <mo>=</mo>\n <mi>μ</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\omega =\\mu =0$</annotation>\n </semantics></math> and the initial energy <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$E(0)&gt;0$</annotation>\n </semantics></math> can be arbitrarily large, we employ an improved concavity method, in conjunction with the contradiction argument, to derive a weaker sufficient condition for finite time blow-up.</div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70034","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the properties of solutions to the following fourth-order wave equation with exponential-type nonlinearity:

u t t + Δ 2 u + u + ω Δ 2 u t + μ u t = f ( u ) , $$\begin{equation*} {u_{tt}} + {\Delta ^2}u + u + \omega {\Delta ^2}{u_t} + \mu {u_t} = f(u), \end{equation*}$$
where the exponential nonlinearity f $f$ is classified as either subcritical growth or critical growth at infinity, based on the Adams-type inequality. By utilizing the potential well theory and Adams-type inequality, we first prove the existence, stability, and blow-up of solutions at critical energy E ( t 0 ) = d $E(t_0)=d$ . Subsequently, when μ > ω λ 1 $\mu >-\omega \lambda _1$ and f $f$ is subcritical, we provide a sufficient condition for finite time blow-up with arbitrarily positive initial energy, which permits the L 2 $L^2$ -inner product of the initial displacement and the initial velocity to be negative. The upper bounds of the blow-up time are then estimated via the concavity method. Furthermore, when f $f$ is critical, we also establish a criterion for finite time blow-up with negative initial energy. Finally, in the specific case where ω = μ = 0 $\omega =\mu =0$ and the initial energy E ( 0 ) > 0 $E(0)>0$ can be arbitrarily large, we employ an improved concavity method, in conjunction with the contradiction argument, to derive a weaker sufficient condition for finite time blow-up.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信