{"title":"Software Defect Prediction Based on Fuzzy Cost Broad Learning System","authors":"Heling Cao, Zhiying Cui, Yonghe Chu, Lina Gong, Guangen Liu, Yun Wang, Fangchao Tian, Peng Li, Haoyang Ge","doi":"10.1155/int/6463038","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Software defect prediction (SDP) is an effective approach to ensure software reliability. Machine learning models have been widely employed in SDP, but they ignore the impact of class imbalance, noise and outliers on the prediction performance. This study proposes a fuzzy cost broad learning system (FC-BLS). FC-BLS not only handles class imbalance problems but also considers the specific sample distribution to address noise and outliers in software defect datasets. Our approach draws fully on the idea of the cost matrix and fuzzy membership functions. It introduces them to BLS, where the cost matrix prioritises the training errors on the minority samples. Hence, the classification hyperplane position is more reasonable, and fuzzy membership functions calculate the membership degree of the sample in a feature mapping space to remove the prediction error caused by noise and outlier samples. Then, the optimisation problem is constructed based on the idea that the minority class and normal instances have relatively high costs. By contrast, the majority class and noise and outlier instances have relatively small costs. This study conducted experiments on nine NASA SDP datasets, and the experimental findings demonstrated the effectiveness of the proposed methodology on most datasets.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/6463038","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/6463038","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Software defect prediction (SDP) is an effective approach to ensure software reliability. Machine learning models have been widely employed in SDP, but they ignore the impact of class imbalance, noise and outliers on the prediction performance. This study proposes a fuzzy cost broad learning system (FC-BLS). FC-BLS not only handles class imbalance problems but also considers the specific sample distribution to address noise and outliers in software defect datasets. Our approach draws fully on the idea of the cost matrix and fuzzy membership functions. It introduces them to BLS, where the cost matrix prioritises the training errors on the minority samples. Hence, the classification hyperplane position is more reasonable, and fuzzy membership functions calculate the membership degree of the sample in a feature mapping space to remove the prediction error caused by noise and outlier samples. Then, the optimisation problem is constructed based on the idea that the minority class and normal instances have relatively high costs. By contrast, the majority class and noise and outlier instances have relatively small costs. This study conducted experiments on nine NASA SDP datasets, and the experimental findings demonstrated the effectiveness of the proposed methodology on most datasets.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.