Weighted Bourgain–Morrey-Besov–Triebel–Lizorkin spaces associated with operators

IF 0.8 3区 数学 Q2 MATHEMATICS
Tengfei Bai, Jingshi Xu
{"title":"Weighted Bourgain–Morrey-Besov–Triebel–Lizorkin spaces associated with operators","authors":"Tengfei Bai,&nbsp;Jingshi Xu","doi":"10.1002/mana.202400223","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> be a space of homogeneous type and <span></span><math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math> be a nonnegative self-adjoint operator on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^2(X)$</annotation>\n </semantics></math> satisfying a Gaussian upper bound on its heat kernel. First, we obtain the boundedness of the Hardy–Littlewood maximal function and its variant on weighted Bourgain–Morrey spaces. The Hardy-type inequality on sequence Bourgain–Morrey spaces are also given. Then, we introduce the weighted homogeneous Bourgain–Morrey Besov spaces and Triebel–Lizorkin spaces associated with the operator <span></span><math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math>. We obtain characterizations of these spaces in terms of Peetre maximal functions, noncompactly supported functional calculus, and heat kernel. Atomic decompositions and molecular decompositions of weighted homogeneous Bourgain–Morrey Besov spaces and Triebel–Lizorkin spaces are also proved. Finally, we apply our results to prove the boundedness of the fractional power of <span></span><math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math> and the spectral multiplier of <span></span><math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math> on Bourgain–Morrey Besov and Triebel–Lizorkin spaces.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 3","pages":"886-924"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400223","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X $X$ be a space of homogeneous type and L $L$ be a nonnegative self-adjoint operator on L 2 ( X ) $L^2(X)$ satisfying a Gaussian upper bound on its heat kernel. First, we obtain the boundedness of the Hardy–Littlewood maximal function and its variant on weighted Bourgain–Morrey spaces. The Hardy-type inequality on sequence Bourgain–Morrey spaces are also given. Then, we introduce the weighted homogeneous Bourgain–Morrey Besov spaces and Triebel–Lizorkin spaces associated with the operator L $L$ . We obtain characterizations of these spaces in terms of Peetre maximal functions, noncompactly supported functional calculus, and heat kernel. Atomic decompositions and molecular decompositions of weighted homogeneous Bourgain–Morrey Besov spaces and Triebel–Lizorkin spaces are also proved. Finally, we apply our results to prove the boundedness of the fractional power of L $L$ and the spectral multiplier of L $L$ on Bourgain–Morrey Besov and Triebel–Lizorkin spaces.

与算子相关的加权bourgain - morrey - besov - triiebel - lizorkin空间
设X$ X$是齐次型空间,L$ L$是l2 (X)$ L^2(X)$上满足高斯上界的非负自伴随算子热内核。首先,我们得到了Hardy-Littlewood极大函数及其变体在加权bourgin - morrey空间上的有界性。并给出了序列Bourgain-Morrey空间上的hardy型不等式。然后,我们引入了与算子L$ L$相关的加权齐次Bourgain-Morrey Besov空间和triiebel - lizorkin空间。我们用Peetre极大函数、非紧支持泛函演算和热核对这些空间进行了刻画。同时证明了加权齐次Bourgain-Morrey Besov空间和triiebel - lizorkin空间的原子分解和分子分解。最后,我们应用我们的结果证明了L$ L$的分数次幂和L$ L$的谱乘子在Bourgain-Morrey Besov和triiebel - lizorkin空间上的有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信