Magnetic quaternized alumina nanotube with fast and enhanced lead (II) and malachite green adsorption: multivariate optimization, kinetic and isotherm study

IF 2.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Reyhaneh Kaveh, Hamidreza Zare, Mojtaba Bagherzadeh
{"title":"Magnetic quaternized alumina nanotube with fast and enhanced lead (II) and malachite green adsorption: multivariate optimization, kinetic and isotherm study","authors":"Reyhaneh Kaveh,&nbsp;Hamidreza Zare,&nbsp;Mojtaba Bagherzadeh","doi":"10.1007/s11164-025-05509-4","DOIUrl":null,"url":null,"abstract":"<div><p>This research aimed to prepare quaternized magnetic alumina nanotube by anchoring hexamethylenetetramine onto chlorinated Fe<sub>3</sub>O<sub>4</sub>@alumina surface. The prepared materials were characterized by XRD, EDX, VSM, FTIR and FESEM techniques. In view of an environmental application of ionomers, the prepared composite was used for uptake of Pb (II) and malachite green (MG) from aqueous solution, and results were compared by the Fe<sub>3</sub>O<sub>4</sub>@alumina. The optimum value of four main factors on the removal efficiency including adsorbent dosage, pH, contact time and ionic strength was obtained by response surface method (RSM) based on Box–Behnken design (BBD). Kinetic and isotherm studies revealed that pseudo-second-order model and Freundlich model are dominant in adsorption by magnetic alumina besides the Langmuir model better described the removal by magnetic ionomer. Results revealed that modifying the magnetic alumina with a quaternized fragment improved its performances for Pb and MG adsorption as the adsorption capacity of Pb (II) and dye is 312 and 151 mg g<sup>−1</sup> by ionomer, respectively.</p></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"51 3","pages":"1681 - 1707"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research on Chemical Intermediates","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11164-025-05509-4","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This research aimed to prepare quaternized magnetic alumina nanotube by anchoring hexamethylenetetramine onto chlorinated Fe3O4@alumina surface. The prepared materials were characterized by XRD, EDX, VSM, FTIR and FESEM techniques. In view of an environmental application of ionomers, the prepared composite was used for uptake of Pb (II) and malachite green (MG) from aqueous solution, and results were compared by the Fe3O4@alumina. The optimum value of four main factors on the removal efficiency including adsorbent dosage, pH, contact time and ionic strength was obtained by response surface method (RSM) based on Box–Behnken design (BBD). Kinetic and isotherm studies revealed that pseudo-second-order model and Freundlich model are dominant in adsorption by magnetic alumina besides the Langmuir model better described the removal by magnetic ionomer. Results revealed that modifying the magnetic alumina with a quaternized fragment improved its performances for Pb and MG adsorption as the adsorption capacity of Pb (II) and dye is 312 and 151 mg g−1 by ionomer, respectively.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
18.20%
发文量
229
审稿时长
2.6 months
期刊介绍: Research on Chemical Intermediates publishes current research articles and concise dynamic reviews on the properties, structures and reactivities of intermediate species in all the various domains of chemistry. The journal also contains articles in related disciplines such as spectroscopy, molecular biology and biochemistry, atmospheric and environmental sciences, catalysis, photochemistry and photophysics. In addition, special issues dedicated to specific topics in the field are regularly published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信