Characteristics-based measurements of supersonic flows from schlieren images

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Alberto Guardone, Marta Zocca, Paolo Gajoni, Francesca Mondonico, Camilla Cecilia Conti
{"title":"Characteristics-based measurements of supersonic flows from schlieren images","authors":"Alberto Guardone,&nbsp;Marta Zocca,&nbsp;Paolo Gajoni,&nbsp;Francesca Mondonico,&nbsp;Camilla Cecilia Conti","doi":"10.1007/s00348-025-03958-6","DOIUrl":null,"url":null,"abstract":"<div><p>A novel method is presented to measure Mach number and flow angle from schlieren images of two-dimensional supersonic flows. A line detection technique is used to extract characteristic lines from schlieren images to measure the velocity direction and the Mach number at the intersection of characteristic curves. The proposed technique is independent of fluid thermodynamics and applies to dilute gas flows and non-ideal compressible flows. The velocity magnitude and fluid thermodynamics are retrieved from the fluid thermodynamic model, assuming constant total enthalpy and entropy. Mach number measurements are also obtained at solid walls by integrating the compatibility equation along the characteristic lines, using the measurements within the flowfield as initial conditions. Results are presented for two exemplary cases: an asymmetric converging–diverging nozzle and the supersonic flow around a diamond-shaped airfoil. Measured values of the Mach number and the flow angle agree with numerical predictions and indirect Mach number measurements based on pressure measurements. The reconstructed pressure and velocity magnitude values agree fairly well with available measurements and simulations in the dilute gas and in the non-ideal regimes.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-025-03958-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-025-03958-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A novel method is presented to measure Mach number and flow angle from schlieren images of two-dimensional supersonic flows. A line detection technique is used to extract characteristic lines from schlieren images to measure the velocity direction and the Mach number at the intersection of characteristic curves. The proposed technique is independent of fluid thermodynamics and applies to dilute gas flows and non-ideal compressible flows. The velocity magnitude and fluid thermodynamics are retrieved from the fluid thermodynamic model, assuming constant total enthalpy and entropy. Mach number measurements are also obtained at solid walls by integrating the compatibility equation along the characteristic lines, using the measurements within the flowfield as initial conditions. Results are presented for two exemplary cases: an asymmetric converging–diverging nozzle and the supersonic flow around a diamond-shaped airfoil. Measured values of the Mach number and the flow angle agree with numerical predictions and indirect Mach number measurements based on pressure measurements. The reconstructed pressure and velocity magnitude values agree fairly well with available measurements and simulations in the dilute gas and in the non-ideal regimes.

基于纹影图像的超音速流特征测量
提出了一种利用二维超声速流动纹影图像测量马赫数和流动角的新方法。采用线检测技术从纹影图像中提取特征线,测量特征曲线交点处的速度方向和马赫数。该技术不依赖于流体热力学,适用于稀气体流动和非理想可压缩流动。速度大小和流体热力学从流体热力学模型中得到,假设总焓和熵恒定。以流场内的测量结果为初始条件,沿特征线对相容方程进行积分,得到了固体壁面的马赫数测量结果。给出了两个示例性的结果:一个非对称的收敛-发散喷管和一个菱形翼型周围的超音速流动。马赫数和气流角的实测值与数值预测和基于压力测量的间接马赫数测量值一致。在稀薄气体和非理想状态下,重建的压力和速度大小值与现有的测量和模拟结果相当吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信