A. V. Zaikovsky, A. M. Dmitrachkov, M. A. Morozova
{"title":"Thermal conductivity, viscosity, and optical properties of nanofluids based on water and carbon nanoparticles","authors":"A. V. Zaikovsky, A. M. Dmitrachkov, M. A. Morozova","doi":"10.1134/S0869864324040164","DOIUrl":null,"url":null,"abstract":"<div><p>The present study deals with the optical and thermophysical properties of nanofluids based on spherical carbon nanoparticles stabilized in water by sodium dodecyl sulfate. Nanoparticles with a mean diameter of 11 nm are synthesized using electric arc sputtering in helium at a pressure of 3 Torr. For a concentration of carbon nanoparticles in the nanofluid equal to 0.01 %, the extinction coefficient varies from 400 to 200 m<sup>−1</sup> in the wavelength range of 180–1100 nm. For mass fractions of nanoparticles within 0–0.04%, the viscosity is not found to depend on the concentration. With an increase in concentration, the thermal conductivity of nanofluids in the same range of concentrations is found to be lower than the thermal conductivity of water by up to 4%.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 4","pages":"781 - 790"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864324040164","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The present study deals with the optical and thermophysical properties of nanofluids based on spherical carbon nanoparticles stabilized in water by sodium dodecyl sulfate. Nanoparticles with a mean diameter of 11 nm are synthesized using electric arc sputtering in helium at a pressure of 3 Torr. For a concentration of carbon nanoparticles in the nanofluid equal to 0.01 %, the extinction coefficient varies from 400 to 200 m−1 in the wavelength range of 180–1100 nm. For mass fractions of nanoparticles within 0–0.04%, the viscosity is not found to depend on the concentration. With an increase in concentration, the thermal conductivity of nanofluids in the same range of concentrations is found to be lower than the thermal conductivity of water by up to 4%.
期刊介绍:
The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.