Symmetry Classes of Classical Stochastic Processes

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Lucas Sá, Pedro Ribeiro, Tomaž Prosen, Denis Bernard
{"title":"Symmetry Classes of Classical Stochastic Processes","authors":"Lucas Sá,&nbsp;Pedro Ribeiro,&nbsp;Tomaž Prosen,&nbsp;Denis Bernard","doi":"10.1007/s10955-025-03423-y","DOIUrl":null,"url":null,"abstract":"<div><p>We perform a systematic symmetry classification of the Markov generators of classical stochastic processes. Our classification scheme is based on the action of involutive symmetry transformations of a real Markov generator, extending the Bernard-LeClair scheme to the arena of classical stochastic processes and leading to a set of up to fifteen allowed symmetry classes. We construct families of solutions of arbitrary matrix dimensions for five of these classes with a simple physical interpretation of particles hopping on multipartite graphs. In the remaining classes, such a simple construction is prevented by the positivity of entries of the generator particular to classical stochastic processes, which imposes a further requirement beyond the usual symmetry classification constraints. We partially overcome this difficulty by resorting to a stochastic optimization algorithm, finding specific examples of generators of small matrix dimensions in six further classes, leaving the existence of the final four allowed classes an open problem. Our symmetry-based results unveil new possibilities in the dynamics of classical stochastic processes: Kramers degeneracy of eigenvalue pairs, dihedral symmetry of the spectra of Markov generators, and time reversal properties of stochastic trajectories and correlation functions.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-025-03423-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03423-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We perform a systematic symmetry classification of the Markov generators of classical stochastic processes. Our classification scheme is based on the action of involutive symmetry transformations of a real Markov generator, extending the Bernard-LeClair scheme to the arena of classical stochastic processes and leading to a set of up to fifteen allowed symmetry classes. We construct families of solutions of arbitrary matrix dimensions for five of these classes with a simple physical interpretation of particles hopping on multipartite graphs. In the remaining classes, such a simple construction is prevented by the positivity of entries of the generator particular to classical stochastic processes, which imposes a further requirement beyond the usual symmetry classification constraints. We partially overcome this difficulty by resorting to a stochastic optimization algorithm, finding specific examples of generators of small matrix dimensions in six further classes, leaving the existence of the final four allowed classes an open problem. Our symmetry-based results unveil new possibilities in the dynamics of classical stochastic processes: Kramers degeneracy of eigenvalue pairs, dihedral symmetry of the spectra of Markov generators, and time reversal properties of stochastic trajectories and correlation functions.

经典随机过程的对称类
我们对经典随机过程的马尔可夫生成器进行了系统的对称分类。我们的分类方案是基于一个真实马尔可夫生成器的对合对称变换的作用,将Bernard-LeClair方案扩展到经典随机过程的舞台,并导致一组多达15个允许的对称类。我们用粒子在多部图上跳跃的简单物理解释,构造了其中5个类的任意矩阵维数的解族。在其余的类中,这种简单的构造被特定于经典随机过程的生成器条目的正性所阻止,这在通常的对称分类约束之外施加了进一步的要求。我们通过采用随机优化算法,在另外六个类中找到小矩阵维数生成器的具体示例,从而部分克服了这一困难,将最后四个允许的类的存在留为开放问题。我们基于对称性的结果揭示了经典随机过程动力学的新可能性:特征值对的Kramers简并,马尔可夫发生器谱的二面体对称性,随机轨迹和相关函数的时间反转特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信