Palladium nanoparticles stabilized on Zn-MOF-NH2-glutaraldehyde: as a novel and effective heterogeneous catalyst for Suzuki coupling reaction

IF 2.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Ghodsieh Nanvakenary, Heshmatollah Alinezhad
{"title":"Palladium nanoparticles stabilized on Zn-MOF-NH2-glutaraldehyde: as a novel and effective heterogeneous catalyst for Suzuki coupling reaction","authors":"Ghodsieh Nanvakenary,&nbsp;Heshmatollah Alinezhad","doi":"10.1007/s11164-025-05525-4","DOIUrl":null,"url":null,"abstract":"<div><p>Effective and notable elimination of leaching of the metal nanoparticle from the catalyst during catalytic processes is still a big challenge for researchers in the design of heterogeneous catalysts. Metal–organic frameworks in both pristine and modified types with an excellent capacity for adsorption and stabilization of metallic active species have received special attention. In this study, Zn-MOF (TMU-16-NH<sub>2</sub>) was selected and modified with urea to enhance amino groups on the surface, and the Zn-MOF-NH<sub>2</sub> was further reacted with glutaraldehyde to achieve support with various sites containing nitrogen and oxygen atoms named Zn-MOF-NH<sub>2</sub>-glutaraldehyde. This adsorbent revealed an outstanding capacity in the adsorption and stabilization of palladium nanoparticles to fabricate a novel heterogeneous catalyst Zn-MOF-NH<sub>2</sub>-glutaraldehyde@Pd for the Suzuki coupling reaction. High performance, great yield of products, reusability, easy work-up, clean profile of reaction, and short reaction times are some of the benefits of the Zn-MOF-NH<sub>2</sub>-glutaraldehyde@Pd catalyst.</p></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"51 3","pages":"1435 - 1455"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research on Chemical Intermediates","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11164-025-05525-4","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Effective and notable elimination of leaching of the metal nanoparticle from the catalyst during catalytic processes is still a big challenge for researchers in the design of heterogeneous catalysts. Metal–organic frameworks in both pristine and modified types with an excellent capacity for adsorption and stabilization of metallic active species have received special attention. In this study, Zn-MOF (TMU-16-NH2) was selected and modified with urea to enhance amino groups on the surface, and the Zn-MOF-NH2 was further reacted with glutaraldehyde to achieve support with various sites containing nitrogen and oxygen atoms named Zn-MOF-NH2-glutaraldehyde. This adsorbent revealed an outstanding capacity in the adsorption and stabilization of palladium nanoparticles to fabricate a novel heterogeneous catalyst Zn-MOF-NH2-glutaraldehyde@Pd for the Suzuki coupling reaction. High performance, great yield of products, reusability, easy work-up, clean profile of reaction, and short reaction times are some of the benefits of the Zn-MOF-NH2-glutaraldehyde@Pd catalyst.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
18.20%
发文量
229
审稿时长
2.6 months
期刊介绍: Research on Chemical Intermediates publishes current research articles and concise dynamic reviews on the properties, structures and reactivities of intermediate species in all the various domains of chemistry. The journal also contains articles in related disciplines such as spectroscopy, molecular biology and biochemistry, atmospheric and environmental sciences, catalysis, photochemistry and photophysics. In addition, special issues dedicated to specific topics in the field are regularly published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信