Migle Savicke, Laura Peciulyte, Joana Bendoraitiene, Volodymyr Samaryk, Ramune Rutkaite
{"title":"Thermoresponsive properties of acenaphthylene-labelled chitosan-graft-poly(N-isopropylacrylamide) copolymers","authors":"Migle Savicke, Laura Peciulyte, Joana Bendoraitiene, Volodymyr Samaryk, Ramune Rutkaite","doi":"10.1007/s00289-024-05608-z","DOIUrl":null,"url":null,"abstract":"<div><p>Acenaphthylene-labelled chitosan-<i>graft</i>-poly(<i>N</i>-isopropylacrylamide) (CS-<i>g</i>-PNIPAAm-ACE) copolymers of different composition were synthesized by free-radical polymerization of chitosan (CS), <i>N</i>-isopropylacrylamide (NIPAAm) and acenaphthylene (ACE) in aqueous solution using potassium persulfate (PPS) as an initiator. By changing the molar ratio of CS:NIPAAm:ACE from 1:0.25:0.0125 to 1:10:0.11 the ACE-labelled copolymers with different content of poly(N-isopropylacrylamide) (PNIPAAm) grafts were prepared. The chemical structure of the obtained CS-<i>g</i>-PNIPAAm-ACE copolymers was confirmed by FT-IR and <sup>1</sup>H NMR spectroscopy. In addition, <sup>1</sup>H NMR spectra were also used to calculate the content of CS and NIPAAm in the synthesized copolymers. The introduction of ACE label into PNIPAAm grafts was also achieved as confirmed by UV spectroscopy. Moreover, the lower critical solution temperature (LCST) behaviour of synthesized copolymers was assessed by cloud point, differential scanning calorimetry (DSC) analysis, particle size, zeta potential and steady-state fluorescence measurements. The aqueous solutions of copolymers containing ≥ 26.5 molar percent of PNIPAAm side chains demonstrated LCST behaviour with the phase separation at around 29.3–31.3 °C. The intensity of thermoresponsiveness depended on the composition of copolymers and was higher for the copolymers with higher content of poly(N-isopropylacrylamide) moieties. Moreover, ACE chromophore attached to PNIPAAm grafts served as a fluorescent marker in the steady-state fluorescence investigation of thermoresponsive behaviour of synthesized copolymers.</p></div>","PeriodicalId":737,"journal":{"name":"Polymer Bulletin","volume":"82 6","pages":"1893 - 1914"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Bulletin","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00289-024-05608-z","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Acenaphthylene-labelled chitosan-graft-poly(N-isopropylacrylamide) (CS-g-PNIPAAm-ACE) copolymers of different composition were synthesized by free-radical polymerization of chitosan (CS), N-isopropylacrylamide (NIPAAm) and acenaphthylene (ACE) in aqueous solution using potassium persulfate (PPS) as an initiator. By changing the molar ratio of CS:NIPAAm:ACE from 1:0.25:0.0125 to 1:10:0.11 the ACE-labelled copolymers with different content of poly(N-isopropylacrylamide) (PNIPAAm) grafts were prepared. The chemical structure of the obtained CS-g-PNIPAAm-ACE copolymers was confirmed by FT-IR and 1H NMR spectroscopy. In addition, 1H NMR spectra were also used to calculate the content of CS and NIPAAm in the synthesized copolymers. The introduction of ACE label into PNIPAAm grafts was also achieved as confirmed by UV spectroscopy. Moreover, the lower critical solution temperature (LCST) behaviour of synthesized copolymers was assessed by cloud point, differential scanning calorimetry (DSC) analysis, particle size, zeta potential and steady-state fluorescence measurements. The aqueous solutions of copolymers containing ≥ 26.5 molar percent of PNIPAAm side chains demonstrated LCST behaviour with the phase separation at around 29.3–31.3 °C. The intensity of thermoresponsiveness depended on the composition of copolymers and was higher for the copolymers with higher content of poly(N-isopropylacrylamide) moieties. Moreover, ACE chromophore attached to PNIPAAm grafts served as a fluorescent marker in the steady-state fluorescence investigation of thermoresponsive behaviour of synthesized copolymers.
期刊介绍:
"Polymer Bulletin" is a comprehensive academic journal on polymer science founded in 1988. It was founded under the initiative of the late Mr. Wang Baoren, a famous Chinese chemist and educator. This journal is co-sponsored by the Chinese Chemical Society, the Institute of Chemistry, and the Chinese Academy of Sciences and is supervised by the China Association for Science and Technology. It is a core journal and is publicly distributed at home and abroad.
"Polymer Bulletin" is a monthly magazine with multiple columns, including a project application guide, outlook, review, research papers, highlight reviews, polymer education and teaching, information sharing, interviews, polymer science popularization, etc. The journal is included in the CSCD Chinese Science Citation Database. It serves as the source journal for Chinese scientific and technological paper statistics and the source journal of Peking University's "Overview of Chinese Core Journals."