Nitrogen-deficient porous g-C3N4 derived from an HMTA-regulated supramolecular precursor for enhanced photocatalytic H2 evolution†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Liuhao Mao, Kailin Chen, Yuzhou Jiang, Xing Kang, Yazhou Zhang, Cheng Cheng, Yu Chen and Jinwen Shi
{"title":"Nitrogen-deficient porous g-C3N4 derived from an HMTA-regulated supramolecular precursor for enhanced photocatalytic H2 evolution†","authors":"Liuhao Mao, Kailin Chen, Yuzhou Jiang, Xing Kang, Yazhou Zhang, Cheng Cheng, Yu Chen and Jinwen Shi","doi":"10.1039/D4SE01835D","DOIUrl":null,"url":null,"abstract":"<p >Precursor structure engineering is a fundamental strategy for regulating the physicochemical properties of g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>, which can promote the development of efficient photocatalysts. Herein, hexamethylenetetramine (HMTA) with a stable three-dimensional cage-like spatial configuration, was successfully incorporated into a melamine–cyanuric acid supramolecular complex <em>via</em> a hydrothermal method. Furthermore, a novel N-defect-rich porous g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> was obtained through thermal pyrolysis of this HMTA-regulated supramolecular precursor. The presence of N defects and the resulting midgap states which were proved to be induced by HMTA-regulated precursor structure engineering could effectively enhance the light absorption and promote the separation of photogenerated carriers of g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>. As a result, the HMTA-regulated g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> exhibited an enhanced H<small><sub>2</sub></small>-evolution activity of 2.77 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>, which was 5.8 times that of pristine g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>. This work proposes a molecular-level structure engineering strategy of g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> by rationally incorporating functional molecules into the precursor, offering valuable insights for developing highly efficient photocatalysts.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 6","pages":" 1498-1504"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01835d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Precursor structure engineering is a fundamental strategy for regulating the physicochemical properties of g-C3N4, which can promote the development of efficient photocatalysts. Herein, hexamethylenetetramine (HMTA) with a stable three-dimensional cage-like spatial configuration, was successfully incorporated into a melamine–cyanuric acid supramolecular complex via a hydrothermal method. Furthermore, a novel N-defect-rich porous g-C3N4 was obtained through thermal pyrolysis of this HMTA-regulated supramolecular precursor. The presence of N defects and the resulting midgap states which were proved to be induced by HMTA-regulated precursor structure engineering could effectively enhance the light absorption and promote the separation of photogenerated carriers of g-C3N4. As a result, the HMTA-regulated g-C3N4 exhibited an enhanced H2-evolution activity of 2.77 mmol g−1 h−1, which was 5.8 times that of pristine g-C3N4. This work proposes a molecular-level structure engineering strategy of g-C3N4 by rationally incorporating functional molecules into the precursor, offering valuable insights for developing highly efficient photocatalysts.

Abstract Image

由hmta调控的超分子前体制备的缺氮多孔g-C3N4用于增强光催化析氢†
前驱体结构工程是调控g-C3N4理化性质的基本策略,可以促进高效光催化剂的开发。本文通过水热法成功地将具有稳定三维笼状空间构型的六亚甲基四胺(HMTA)掺入到三聚氰胺-三聚尿酸超分子配合物中。此外,通过热裂解这种hta调控的超分子前驱体,得到了一种新型的富n缺陷多孔g-C3N4。N缺陷的存在和由此产生的中隙态被证明是由hta调控的前驱体结构工程引起的,可以有效地增强g-C3N4的光吸收并促进光生载流子的分离。结果表明,hta调控的g- c3n4的h2进化活性提高了2.77 mmol g−1 h−1,是原始g- c3n4的5.8倍。本工作提出了g-C3N4前驱体合理加入功能分子的分子水平结构工程策略,为开发高效光催化剂提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信