Analysis and Strategies of Wireless Caching-Assisted Rate-Splitting Multiple Access

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS
Anagha K. Kowshik;Sanjeev Gurugopinath;Sami Muhaidat
{"title":"Analysis and Strategies of Wireless Caching-Assisted Rate-Splitting Multiple Access","authors":"Anagha K. Kowshik;Sanjeev Gurugopinath;Sami Muhaidat","doi":"10.1109/LCOMM.2024.3512621","DOIUrl":null,"url":null,"abstract":"The growing number of connected devices in 6G networks requires advanced multiple access (MA) techniques and caching strategies to efficiently manage interference and enhance data rates. Caching offers a promising solution by storing frequently requested content at the network edge, reducing latency and alleviating backhaul congestion. Integrating caching with MA techniques is paramount for realizing the next-generation networks. Rate-splitting MA (RSMA) has emerged recently as a key candidate for future networks, due to its flexibility in managing interference and enhancing spectral efficiency. This paper presents a study on the performance of cache-aided RSMA (CA-RSMA) systems, which enhances the signal-to-noise-plus-interference (SINR) ratio. A multi-antenna equipped transmitter uses superposition coding, and two single-antenna equipped receivers use their cached content to remove the interference, which improves the SINR. We derive analytical expressions for key metrics, including probability of successful decoding (PSD), outage probability (OP), rate region and the weighted sum rate (WSR) for CA-RSMA. Furthermore, we formulate constrained optimization problems to maximize the PSD and WSR, in terms of the power allocation coefficients. Simulation results validate our analysis, and we show that CA-RSMA outperforms the conventional RSMA, non-orthogonal multiple access (NOMA), space-division multiple access, in terms of the considered metrics. A performance comparison shows that CA-RSMA outperforms CA-NOMA in terms of RR and WSR at an expense of PSD.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 3","pages":"418-422"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10781385/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The growing number of connected devices in 6G networks requires advanced multiple access (MA) techniques and caching strategies to efficiently manage interference and enhance data rates. Caching offers a promising solution by storing frequently requested content at the network edge, reducing latency and alleviating backhaul congestion. Integrating caching with MA techniques is paramount for realizing the next-generation networks. Rate-splitting MA (RSMA) has emerged recently as a key candidate for future networks, due to its flexibility in managing interference and enhancing spectral efficiency. This paper presents a study on the performance of cache-aided RSMA (CA-RSMA) systems, which enhances the signal-to-noise-plus-interference (SINR) ratio. A multi-antenna equipped transmitter uses superposition coding, and two single-antenna equipped receivers use their cached content to remove the interference, which improves the SINR. We derive analytical expressions for key metrics, including probability of successful decoding (PSD), outage probability (OP), rate region and the weighted sum rate (WSR) for CA-RSMA. Furthermore, we formulate constrained optimization problems to maximize the PSD and WSR, in terms of the power allocation coefficients. Simulation results validate our analysis, and we show that CA-RSMA outperforms the conventional RSMA, non-orthogonal multiple access (NOMA), space-division multiple access, in terms of the considered metrics. A performance comparison shows that CA-RSMA outperforms CA-NOMA in terms of RR and WSR at an expense of PSD.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信