{"title":"Second-Order Interference Effect of Polarized Light Based on Two-Photon Absorption Detection","authors":"Wenxuan Hao;Huaibin Zheng;Bin Li;Yu Zhou;Jianbin Liu;Hui Chen;Yuchen He;Yanyan Liu;Zhuo Xu","doi":"10.1109/JSTQE.2025.3545414","DOIUrl":null,"url":null,"abstract":"The two-photon interference effect of polarized light holds significant research importance in quantum optics. Different types of polarized light exhibit distinct interference behaviors, making the systematic study of these behaviors crucial. This paper introduces the concept of the polarization two-photon coherence matrix and provides a theoretical explanation for the differences in two-photon interference phenomena among linear, circular, and elliptically polarized light. Using a polarization Michelson interferometer based on two-photon absorption detection, second-order interference images of circularly polarized and elliptically polarized light were experimentally captured. The differences in these two-photon interference phenomena can be elucidated by visualizing the polarization coherence matrix. Furthermore, this theory was applied to the study of sub-wavelength interference phenomena of circularly polarized light, confirming the universality of the theoretical model and offering new perspectives and tools for the study of quantum optics.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 5: Quantum Materials and Quantum Devices","pages":"1-9"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10902225/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The two-photon interference effect of polarized light holds significant research importance in quantum optics. Different types of polarized light exhibit distinct interference behaviors, making the systematic study of these behaviors crucial. This paper introduces the concept of the polarization two-photon coherence matrix and provides a theoretical explanation for the differences in two-photon interference phenomena among linear, circular, and elliptically polarized light. Using a polarization Michelson interferometer based on two-photon absorption detection, second-order interference images of circularly polarized and elliptically polarized light were experimentally captured. The differences in these two-photon interference phenomena can be elucidated by visualizing the polarization coherence matrix. Furthermore, this theory was applied to the study of sub-wavelength interference phenomena of circularly polarized light, confirming the universality of the theoretical model and offering new perspectives and tools for the study of quantum optics.
期刊介绍:
Papers published in the IEEE Journal of Selected Topics in Quantum Electronics fall within the broad field of science and technology of quantum electronics of a device, subsystem, or system-oriented nature. Each issue is devoted to a specific topic within this broad spectrum. Announcements of the topical areas planned for future issues, along with deadlines for receipt of manuscripts, are published in this Journal and in the IEEE Journal of Quantum Electronics. Generally, the scope of manuscripts appropriate to this Journal is the same as that for the IEEE Journal of Quantum Electronics. Manuscripts are published that report original theoretical and/or experimental research results that advance the scientific and technological base of quantum electronics devices, systems, or applications. The Journal is dedicated toward publishing research results that advance the state of the art or add to the understanding of the generation, amplification, modulation, detection, waveguiding, or propagation characteristics of coherent electromagnetic radiation having sub-millimeter and shorter wavelengths. In order to be suitable for publication in this Journal, the content of manuscripts concerned with subject-related research must have a potential impact on advancing the technological base of quantum electronic devices, systems, and/or applications. Potential authors of subject-related research have the responsibility of pointing out this potential impact. System-oriented manuscripts must be concerned with systems that perform a function previously unavailable or that outperform previously established systems that did not use quantum electronic components or concepts. Tutorial and review papers are by invitation only.