{"title":"Hybrid Beamforming for Wideband Millimeter Wave MIMO Integrated Sensing and Communications","authors":"Junpeng Guo;Chenhao Qi","doi":"10.1109/LCOMM.2024.3524498","DOIUrl":null,"url":null,"abstract":"In this letter, we propose a true-time-delayer network assisted hybrid beamforming scheme for wideband millimeter wave multiple-input multiple-output integrated sensing and communications. By jointly optimizing the digital beamformer, the true-time-delayer network and the phase shifter network, we aim at making the sum of beam patterns across all subcarriers approach a predefined sensing beam pattern, subject to the constraints of the signal-to-interference-plus-noise ratio requirements of communication users and the maximum transmit power of the base station. To improve the design flexibility, the sensing beam pattern is distributed among different subcarriers for optimization, with phase vectors introduced to transform the modulus summation into a linear summation. Additionally, by decoupling the multi-variable constraint, we employ the alternating direction method of multipliers to decompose the original problem into manageable subproblems, which are iteratively optimized. Simulation results demonstrate that the proposed scheme outperforms existing hybrid beamforming schemes in terms of beam pattern and sensing performance.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 3","pages":"462-466"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10818621/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this letter, we propose a true-time-delayer network assisted hybrid beamforming scheme for wideband millimeter wave multiple-input multiple-output integrated sensing and communications. By jointly optimizing the digital beamformer, the true-time-delayer network and the phase shifter network, we aim at making the sum of beam patterns across all subcarriers approach a predefined sensing beam pattern, subject to the constraints of the signal-to-interference-plus-noise ratio requirements of communication users and the maximum transmit power of the base station. To improve the design flexibility, the sensing beam pattern is distributed among different subcarriers for optimization, with phase vectors introduced to transform the modulus summation into a linear summation. Additionally, by decoupling the multi-variable constraint, we employ the alternating direction method of multipliers to decompose the original problem into manageable subproblems, which are iteratively optimized. Simulation results demonstrate that the proposed scheme outperforms existing hybrid beamforming schemes in terms of beam pattern and sensing performance.
期刊介绍:
The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.