João Marcus S. Callegari;Lucas S. Chaves;Lucas S. Araujo;Braz J. Cardoso Filho;Danilo I. Brandao
{"title":"Centralized Strategies for Grid-Connected Microgrids Integrating Multicontrol Actions to Enhance the Dynamic Response","authors":"João Marcus S. Callegari;Lucas S. Chaves;Lucas S. Araujo;Braz J. Cardoso Filho;Danilo I. Brandao","doi":"10.1109/OJIES.2025.3541880","DOIUrl":null,"url":null,"abstract":"Feedback, feedforward, and disturbance decoupling control actions are commonly addressed to the well-known current control of distributed energy resources (DERs). This article extends these control actions to centralized grid-connected microgrids (MGs) aiming to improve the dynamics at their point of common coupling (PCC). Three strategies are comprehensively compared considering 1) feedback action (<italic>F</i> control); 2) feedforward and disturbance decoupling actions (<italic>fD</i> control); and 3) all three actions (<italic>FfD</i> control). Time-varying experimental results obtained using an experimental laboratory-scale single-phase MG show the feasibility of these centralized control schemes in real-field applications. Comparison is carried out regarding the PCC power reference tracking, MG control dynamic stiffness, and stability evaluation related to communication link nonidealities. Among the strategies, <italic>F</i> and <italic>fD</i> controls show lower susceptibility to communication latency. The proposed complete strategy, i.e., <italic>FfD</i>, shows wider reference tracking bandwidth and increased low-frequency dynamic stiffness to load and communication disturbances. These enhanced capabilities are attained by properly applying the well-established control actions at the MG firmware level, without requiring any MG hardware retrofit.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"331-344"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10884821","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10884821/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Feedback, feedforward, and disturbance decoupling control actions are commonly addressed to the well-known current control of distributed energy resources (DERs). This article extends these control actions to centralized grid-connected microgrids (MGs) aiming to improve the dynamics at their point of common coupling (PCC). Three strategies are comprehensively compared considering 1) feedback action (F control); 2) feedforward and disturbance decoupling actions (fD control); and 3) all three actions (FfD control). Time-varying experimental results obtained using an experimental laboratory-scale single-phase MG show the feasibility of these centralized control schemes in real-field applications. Comparison is carried out regarding the PCC power reference tracking, MG control dynamic stiffness, and stability evaluation related to communication link nonidealities. Among the strategies, F and fD controls show lower susceptibility to communication latency. The proposed complete strategy, i.e., FfD, shows wider reference tracking bandwidth and increased low-frequency dynamic stiffness to load and communication disturbances. These enhanced capabilities are attained by properly applying the well-established control actions at the MG firmware level, without requiring any MG hardware retrofit.
期刊介绍:
The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments.
Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.