{"title":"Scalable Microwave SQUID Multiplexer Readout Architecture for TES-Based THz Security Camera","authors":"Matthias Schmelz;Erik Heinz;Katja Peiselt;Gabriel Zieger;Oliver Brandel;Detlef Born;Jürgen Kunert;Michael Siegel;Vyacheslav Zakosarenko;Matthias Meyer;Ronny Stolz","doi":"10.1109/TASC.2025.3545212","DOIUrl":null,"url":null,"abstract":"In this article, we have developed a scalable superconducting quantum interference device (SQUID)-based microwave multiplexer (µMUX) readout architecture adapted for arrays of transition edge sensors (TESs) to be exploited in a terahertz security camera. The camera system combines a scanning optics together with a 128-pixel TES array and aims for security gate operations with a standoff detection distance of up to 25 m. The developed frequency-domain µMUX is used to read out all feed-horn-coupled TESs based on aluminum thermistors, with noise limited by intrinsic TES noise. Both the TESs and µMUXs are operated in a compact cryostat with a base temperature of about 0.9 K. The µMUX has been fabricated in the cross-type <inline-formula><tex-math>$\\text{Nb}/ \\text{AlO}\\_{\\rm{x}}/ \\text{Nb}$</tex-math></inline-formula> Josephson junction process developed at the Leibniz Institute of Photonic Technology and incorporates high-quality superconducting thin-film resonators with resonant frequencies in the range of 5–6 GHz. An accordingly implemented field-programmable-gate-array-based readout electronics enables the simultaneous and continuous real-time readout of 128 rf-SQUIDs, including a flux ramp modulation scheme. In operation with the aluminum TES, we achieved a dark noise equivalent power of about <inline-formula><tex-math>$2.5\\; \\text{fW}/ \\text{Hz}^{1/ 2}$</tex-math></inline-formula> while providing a TES readout rate of 3.75 kHz, necessary for a video frame rate of 25 Hz of the security camera.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 3","pages":"1-5"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10904018/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we have developed a scalable superconducting quantum interference device (SQUID)-based microwave multiplexer (µMUX) readout architecture adapted for arrays of transition edge sensors (TESs) to be exploited in a terahertz security camera. The camera system combines a scanning optics together with a 128-pixel TES array and aims for security gate operations with a standoff detection distance of up to 25 m. The developed frequency-domain µMUX is used to read out all feed-horn-coupled TESs based on aluminum thermistors, with noise limited by intrinsic TES noise. Both the TESs and µMUXs are operated in a compact cryostat with a base temperature of about 0.9 K. The µMUX has been fabricated in the cross-type $\text{Nb}/ \text{AlO}\_{\rm{x}}/ \text{Nb}$ Josephson junction process developed at the Leibniz Institute of Photonic Technology and incorporates high-quality superconducting thin-film resonators with resonant frequencies in the range of 5–6 GHz. An accordingly implemented field-programmable-gate-array-based readout electronics enables the simultaneous and continuous real-time readout of 128 rf-SQUIDs, including a flux ramp modulation scheme. In operation with the aluminum TES, we achieved a dark noise equivalent power of about $2.5\; \text{fW}/ \text{Hz}^{1/ 2}$ while providing a TES readout rate of 3.75 kHz, necessary for a video frame rate of 25 Hz of the security camera.
期刊介绍:
IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.