Comparative investigation of electrochemical properties of Li1.5Al0.5Ti1.5(PO4)3 ceramic electrolyte synthesized using different chelating agents for all solid-state batteries
Seul Ki Choi , SungJoon Ryu , Yeong Hoon Jeon , Se Youn Cho , Kun-Jae Lee , Jaewon Choi , Minho Yang
{"title":"Comparative investigation of electrochemical properties of Li1.5Al0.5Ti1.5(PO4)3 ceramic electrolyte synthesized using different chelating agents for all solid-state batteries","authors":"Seul Ki Choi , SungJoon Ryu , Yeong Hoon Jeon , Se Youn Cho , Kun-Jae Lee , Jaewon Choi , Minho Yang","doi":"10.1016/j.ceramint.2024.12.482","DOIUrl":null,"url":null,"abstract":"<div><div>NASICON-type oxide solid electrolyte, Li<sub>1.5</sub>Al<sub>0.5</sub>Ti<sub>1.5</sub>(PO<sub>4</sub>)<sub>3</sub> (LATP) is a promising candidate to replace liquid electrolytes due to its low cost, ease of processing, and excellent stability. This study investigates the effect of chelating agents on the properties of LATP solid-state electrolytes (SSEs) synthesized by the sol-gel method. Three different chelating agents are employed: Citric acid, Acetylacetone, and Ethylenediaminetetraacetic acid (EDTA). The thermal, structural, and electrochemical properties of the LATP samples are investigated and evaluated their performance in solid-state batteries. The chelating agents significantly impact the thermal behavior, phase formation, and microstructure of LATP SSEs due to their intrinsic chemical bonding property. LATP using citric acid (c-LATP) exhibits the small grain size of about 2 μm and the highest density of 2.8 g/cm<sup>3</sup>. The Li//c-LATP//Li cell presents the most stable voltage profile with the lowest overpotential resulting from good ionic conductivity (1.03 × 10<sup>−3</sup> S/cm). In addition, The Li//c-LATP//LFP battery shows the highest capacity retention rate (81 %) after 100 cycles and excellent rate performance. These results highlight the importance of chelating agent selection in the sol-gel synthesis of LATP for optimizing its properties and achieving high performance of all-solid-state batteries.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"51 8","pages":"Pages 10502-10509"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224061558","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
NASICON-type oxide solid electrolyte, Li1.5Al0.5Ti1.5(PO4)3 (LATP) is a promising candidate to replace liquid electrolytes due to its low cost, ease of processing, and excellent stability. This study investigates the effect of chelating agents on the properties of LATP solid-state electrolytes (SSEs) synthesized by the sol-gel method. Three different chelating agents are employed: Citric acid, Acetylacetone, and Ethylenediaminetetraacetic acid (EDTA). The thermal, structural, and electrochemical properties of the LATP samples are investigated and evaluated their performance in solid-state batteries. The chelating agents significantly impact the thermal behavior, phase formation, and microstructure of LATP SSEs due to their intrinsic chemical bonding property. LATP using citric acid (c-LATP) exhibits the small grain size of about 2 μm and the highest density of 2.8 g/cm3. The Li//c-LATP//Li cell presents the most stable voltage profile with the lowest overpotential resulting from good ionic conductivity (1.03 × 10−3 S/cm). In addition, The Li//c-LATP//LFP battery shows the highest capacity retention rate (81 %) after 100 cycles and excellent rate performance. These results highlight the importance of chelating agent selection in the sol-gel synthesis of LATP for optimizing its properties and achieving high performance of all-solid-state batteries.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.