Yongzhi Yang , Xiaoqian Liu , Yuchao Li , Minghui Lu , Ziyu Zhang , Yanhu Zhan , Yankai Li , Zhi-Min Dang , Shao-Long Zhong , Dongxin He , Zhicheng Shi
{"title":"Facile construction of copper nanoparticles decorated 3D calcium titanate toward tunable high dielectric and energy storage epoxy composites","authors":"Yongzhi Yang , Xiaoqian Liu , Yuchao Li , Minghui Lu , Ziyu Zhang , Yanhu Zhan , Yankai Li , Zhi-Min Dang , Shao-Long Zhong , Dongxin He , Zhicheng Shi","doi":"10.1016/j.ceramint.2024.12.489","DOIUrl":null,"url":null,"abstract":"<div><div>With the continuous development of semiconductor power electronic devices and the rising operating frequencies of systems such as 5G, there is an urgent need for energy storage units that exhibit high dielectric constants and energy densities while simultaneously reducing dielectric losses. Achieving this optimization is critical for mitigating thermal failure in electronic devices and enhancing their operational reliability and service life. A 3D CTO-Cu/epoxy (EP) dielectric composite has been successfully fabricated by reverse-infiltrating epoxy into a pre-constructed 3D network of calcium titanate (CTO) decorated with copper nanoparticles. The continuous 3D CTO architecture, created via a facile sol-gel process, ensures uniform distribution of copper (Cu) nanoparticles throughout the structure, synergistically enhancing the overall performance of 3D CTO-Cu/EP composite. Moreover, in virtue of the equivalent micro-capacitors and the Coulomb-blockade effect generated by the Cu nanoparticles, the dielectric properties of the 3D CTO-Cu/EP composites were significantly enhanced, while the dielectric loss was simultaneously and effectively suppressed—an achievement that is particularly challenging to realize. The 3D CTO-0.2Cu/EP system achieved the highest dielectric constant of 28.0 (at 1 kHz) and the lowest dielectric loss of 0.021, which are 184 % and 70 % improvements over the 3D CTO/EP composite, respectively, offering an effective method to adjust the dielectric and energy storage properties of polymer-based dielectrics.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"51 8","pages":"Pages 10582-10589"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224061649","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
With the continuous development of semiconductor power electronic devices and the rising operating frequencies of systems such as 5G, there is an urgent need for energy storage units that exhibit high dielectric constants and energy densities while simultaneously reducing dielectric losses. Achieving this optimization is critical for mitigating thermal failure in electronic devices and enhancing their operational reliability and service life. A 3D CTO-Cu/epoxy (EP) dielectric composite has been successfully fabricated by reverse-infiltrating epoxy into a pre-constructed 3D network of calcium titanate (CTO) decorated with copper nanoparticles. The continuous 3D CTO architecture, created via a facile sol-gel process, ensures uniform distribution of copper (Cu) nanoparticles throughout the structure, synergistically enhancing the overall performance of 3D CTO-Cu/EP composite. Moreover, in virtue of the equivalent micro-capacitors and the Coulomb-blockade effect generated by the Cu nanoparticles, the dielectric properties of the 3D CTO-Cu/EP composites were significantly enhanced, while the dielectric loss was simultaneously and effectively suppressed—an achievement that is particularly challenging to realize. The 3D CTO-0.2Cu/EP system achieved the highest dielectric constant of 28.0 (at 1 kHz) and the lowest dielectric loss of 0.021, which are 184 % and 70 % improvements over the 3D CTO/EP composite, respectively, offering an effective method to adjust the dielectric and energy storage properties of polymer-based dielectrics.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.