{"title":"First studies on cascaded dual-phase liquid hole-multipliers in xenon","authors":"G. Martínez-Lema , A. Roy , A. Breskin , L. Arazi","doi":"10.1016/j.nima.2025.170366","DOIUrl":null,"url":null,"abstract":"<div><div>Challenges in scaling up noble-liquid time projection chambers prompted the exploration of new detection concepts. The liquid hole-multiplier (LHM) was introduced as a potential component, enabling the detection of ionization electrons and VUV photons. Prior studies focused on perforated electrodes coated with CsI immersed in the liquid and electroluminescence amplification produced on a bubble trapped underneath. However, the performance was hindered by electron transfer across the liquid-gas interface. Here, we explored a bubble-free variant, placing a CsI-coated Thick Gas Electron Multiplier electrode below the liquid-gas interface to improve the transfer efficiency across it. Results show <span><math><mo>></mo></math></span>5-fold improvement in the S1’/S2 ratio (a proxy for the photon detection efficiency (PDE)) compared to the bubble-assisted LHM. Although the achieved PDE is still below expectation (<span><math><mo>∼</mo></math></span>4%), we propose potential improvements to enhance the performance of this detector.</div></div>","PeriodicalId":19359,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","volume":"1075 ","pages":"Article 170366"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168900225001676","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Challenges in scaling up noble-liquid time projection chambers prompted the exploration of new detection concepts. The liquid hole-multiplier (LHM) was introduced as a potential component, enabling the detection of ionization electrons and VUV photons. Prior studies focused on perforated electrodes coated with CsI immersed in the liquid and electroluminescence amplification produced on a bubble trapped underneath. However, the performance was hindered by electron transfer across the liquid-gas interface. Here, we explored a bubble-free variant, placing a CsI-coated Thick Gas Electron Multiplier electrode below the liquid-gas interface to improve the transfer efficiency across it. Results show 5-fold improvement in the S1’/S2 ratio (a proxy for the photon detection efficiency (PDE)) compared to the bubble-assisted LHM. Although the achieved PDE is still below expectation (4%), we propose potential improvements to enhance the performance of this detector.
期刊介绍:
Section A of Nuclear Instruments and Methods in Physics Research publishes papers on design, manufacturing and performance of scientific instruments with an emphasis on large scale facilities. This includes the development of particle accelerators, ion sources, beam transport systems and target arrangements as well as the use of secondary phenomena such as synchrotron radiation and free electron lasers. It also includes all types of instrumentation for the detection and spectrometry of radiations from high energy processes and nuclear decays, as well as instrumentation for experiments at nuclear reactors. Specialized electronics for nuclear and other types of spectrometry as well as computerization of measurements and control systems in this area also find their place in the A section.
Theoretical as well as experimental papers are accepted.