Mitigating urban heat island through urban-rural transition zone landscape configuration: Evaluation based on an interpretable ensemble machine learning framework
IF 10.5 1区 工程技术Q1 CONSTRUCTION & BUILDING TECHNOLOGY
{"title":"Mitigating urban heat island through urban-rural transition zone landscape configuration: Evaluation based on an interpretable ensemble machine learning framework","authors":"Shengyu Guan, Yiduo Chen, Tianwen Wang, Haihui Hu","doi":"10.1016/j.scs.2025.106272","DOIUrl":null,"url":null,"abstract":"<div><div>Research methods for mitigating urban heat islands (UHIs) have been widely documented. Nevertheless, the importance of mitigating UHIs through landscape allocation in urban-rural transition zones (URTZs) has rarely been emphasized in the context of intra-urban land scarcity and urban expansion in China. This study aimed to quantify the binary relationship between URTZ's landscape configuration and urban heat island intensity (UHII) by using an interpretable ensemble learning framework in Harbin, a megacity in China. After URTZ's identification, this study integrated Boruta algorithm, SHAP, ALE (interpretable machine learning techniques) and 7 tree-based machine learning models to assess the importance of URTZ's landscape configuration with both global and local angles. The results indicated that: construction land contributed most, with construction land ratio (23.20 %), separation degree (15.95 %), and maximum patch index (15.03 %) ranking highest. This was followed by agricultural land landscape shape index (10.31 %) and landscape diversity (9 %). Maintaining construction land ratio at 50–70 % can keep UHII unchanged; UHII at the grid landscape level can be alleviated when separation degree between construction land patches was above 0.7. The largest construction land patch within the grid was maintained at 20–40 or 50–70, which will not bring significant changes to UHII. The agricultural land landscape shape should be as simple as possible to reduce UHII; landscape diversity greater than 0.6 can reduce UHII, and <0.6 can increase UHII. These findings provide valuable insights into UHI mitigation and offer strategic guidance for ecological planning to promote sustainable development of large cities in rapidly changing URTZs.</div></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":"123 ","pages":"Article 106272"},"PeriodicalIF":10.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210670725001490","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Research methods for mitigating urban heat islands (UHIs) have been widely documented. Nevertheless, the importance of mitigating UHIs through landscape allocation in urban-rural transition zones (URTZs) has rarely been emphasized in the context of intra-urban land scarcity and urban expansion in China. This study aimed to quantify the binary relationship between URTZ's landscape configuration and urban heat island intensity (UHII) by using an interpretable ensemble learning framework in Harbin, a megacity in China. After URTZ's identification, this study integrated Boruta algorithm, SHAP, ALE (interpretable machine learning techniques) and 7 tree-based machine learning models to assess the importance of URTZ's landscape configuration with both global and local angles. The results indicated that: construction land contributed most, with construction land ratio (23.20 %), separation degree (15.95 %), and maximum patch index (15.03 %) ranking highest. This was followed by agricultural land landscape shape index (10.31 %) and landscape diversity (9 %). Maintaining construction land ratio at 50–70 % can keep UHII unchanged; UHII at the grid landscape level can be alleviated when separation degree between construction land patches was above 0.7. The largest construction land patch within the grid was maintained at 20–40 or 50–70, which will not bring significant changes to UHII. The agricultural land landscape shape should be as simple as possible to reduce UHII; landscape diversity greater than 0.6 can reduce UHII, and <0.6 can increase UHII. These findings provide valuable insights into UHI mitigation and offer strategic guidance for ecological planning to promote sustainable development of large cities in rapidly changing URTZs.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including:
1. Smart cities and resilient environments;
2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management;
3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management);
4. Energy efficient, low/zero carbon, and green buildings/communities;
5. Climate change mitigation and adaptation in urban environments;
6. Green infrastructure and BMPs;
7. Environmental Footprint accounting and management;
8. Urban agriculture and forestry;
9. ICT, smart grid and intelligent infrastructure;
10. Urban design/planning, regulations, legislation, certification, economics, and policy;
11. Social aspects, impacts and resiliency of cities;
12. Behavior monitoring, analysis and change within urban communities;
13. Health monitoring and improvement;
14. Nexus issues related to sustainable cities and societies;
15. Smart city governance;
16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society;
17. Big data, machine learning, and artificial intelligence applications and case studies;
18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems.
19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management;
20. Waste reduction and recycling;
21. Wastewater collection, treatment and recycling;
22. Smart, clean and healthy transportation systems and infrastructure;