Synergistic effects of biochar and abscisic acid improved root morphology, antioxidant defense system and decreased availability and bioaccumulation of cadmium in Triticum aestivum (L.) under cadmium stress

IF 6.7 2区 环境科学与生态学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Feng Lin , Zaffar Malik , Nasir Masood , Muhammad Rizwan , Yousef Alhaj Hamoud , Hiba Shaghaleh , Sana Noreen , Jean Wan Hong Yong
{"title":"Synergistic effects of biochar and abscisic acid improved root morphology, antioxidant defense system and decreased availability and bioaccumulation of cadmium in Triticum aestivum (L.) under cadmium stress","authors":"Feng Lin ,&nbsp;Zaffar Malik ,&nbsp;Nasir Masood ,&nbsp;Muhammad Rizwan ,&nbsp;Yousef Alhaj Hamoud ,&nbsp;Hiba Shaghaleh ,&nbsp;Sana Noreen ,&nbsp;Jean Wan Hong Yong","doi":"10.1016/j.eti.2025.104121","DOIUrl":null,"url":null,"abstract":"<div><div>Biochar (BC) and abscisic acid (ABA) may deliver positive physiological effects on heavy metal-stressed plants but their interactive role for regulating cadmium (Cd) availability in agricultural soils is unclear. This study revealed that the Cd-induced oxidative stress significantly reduced the growth of wheat, physiology and antioxidant responses. Interestingly, the co-application of BC (2.5 %) and ABA (20 μmol L<sup>−1</sup>) restored the growth of wheat plants by minimizing Cd accumulation and translocation than their single use. The co-application of these amendments significantly increased the tissues biomass by 36 %, total root volume (29 %), root surface area (44 %), foliar Chl-a and Chl-b by 59 % and 55 % at 10 mg kg<sup>−1</sup> Cd than control. Elevated Cd levels increased the proline, MDA and H<sub>2</sub>O<sub>2</sub> contents, while BC and ABA applications ameliorated the Cd-induced oxidative injury by boosting the enzymatic activities of catalase by 46 %, ascorbate-peroxidase by 46 % and peroxidase by 37 % at 10 mg kg<sup>−1</sup> Cd. The Cd treatment also increased Cd levels in soil, root and shoot tissues of wheat plants. The co-application BC and ABA reduced DTPA-extractable soil Cd by about 3-fold at 5 mg kg<sup>−1</sup> and by about 1.8-fold at 10 mg kg<sup>−1</sup>, as compared to respective controls. The combined BC + ABA treatment reduced Cd biological accumulation by 35 % and 33 %; and Cd translocation by 21 % and 9 % at 5 and 10 mg kg<sup>−1</sup> Cd levels than control. It was concluded that the combined BC+ABA application restored the growth, physiology, antioxidant enzymatic activities and minimized Cd bioaccumulation in wheat tissues.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"38 ","pages":"Article 104121"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186425001075","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biochar (BC) and abscisic acid (ABA) may deliver positive physiological effects on heavy metal-stressed plants but their interactive role for regulating cadmium (Cd) availability in agricultural soils is unclear. This study revealed that the Cd-induced oxidative stress significantly reduced the growth of wheat, physiology and antioxidant responses. Interestingly, the co-application of BC (2.5 %) and ABA (20 μmol L−1) restored the growth of wheat plants by minimizing Cd accumulation and translocation than their single use. The co-application of these amendments significantly increased the tissues biomass by 36 %, total root volume (29 %), root surface area (44 %), foliar Chl-a and Chl-b by 59 % and 55 % at 10 mg kg−1 Cd than control. Elevated Cd levels increased the proline, MDA and H2O2 contents, while BC and ABA applications ameliorated the Cd-induced oxidative injury by boosting the enzymatic activities of catalase by 46 %, ascorbate-peroxidase by 46 % and peroxidase by 37 % at 10 mg kg−1 Cd. The Cd treatment also increased Cd levels in soil, root and shoot tissues of wheat plants. The co-application BC and ABA reduced DTPA-extractable soil Cd by about 3-fold at 5 mg kg−1 and by about 1.8-fold at 10 mg kg−1, as compared to respective controls. The combined BC + ABA treatment reduced Cd biological accumulation by 35 % and 33 %; and Cd translocation by 21 % and 9 % at 5 and 10 mg kg−1 Cd levels than control. It was concluded that the combined BC+ABA application restored the growth, physiology, antioxidant enzymatic activities and minimized Cd bioaccumulation in wheat tissues.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Technology & Innovation
Environmental Technology & Innovation Environmental Science-General Environmental Science
CiteScore
14.00
自引率
4.20%
发文量
435
审稿时长
74 days
期刊介绍: Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas. As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信