Alissa T. Rzepski , Mandy M. Schofield , Stephanie Richardson-Solorzano , Mark L. Arranguez , Alvin W. Su , Justin Parreno
{"title":"Targeting the reorganization of F-actin for cell-based implantation cartilage repair therapies","authors":"Alissa T. Rzepski , Mandy M. Schofield , Stephanie Richardson-Solorzano , Mark L. Arranguez , Alvin W. Su , Justin Parreno","doi":"10.1016/j.diff.2025.100847","DOIUrl":null,"url":null,"abstract":"<div><div>Articular cartilage is an avascular tissue that allows for frictionless mobility of joints. Unfortunately, cartilage is incapable of self-repair and any damage leads to degradation in osteoarthritis (OA). Autologous chondrocyte implantation therapies are currently being used to treat focal cartilage defects caused by post-traumatic OA (PTOA). For chondrocyte implantation, chondrocytes are isolated from healthy regions of cartilage from damaged joints, expanded on stiff polystyrene to increase cell number, and reimplanted into damaged areas to stimulate repair. Unfortunately, chondrocyte implantations can ultimately fail as chondrocytes dedifferentiate during expansion. In dedifferentiation, chondrocytes increase in size, elongate, and express contractile cytoskeletal molecules. Furthermore, cells produce a fibroblastic matrix which is biomechanically inferior to articular cartilage matrix. Therefore, developing a greater understanding of dedifferentiation is imperative. In the dedifferentiation process, cellular actin filaments reorganize from a cortical organization into stress fibers. The formation of stress fibers plays a crucial role in chondrocyte dedifferentiation by regulating chondrocyte cell morphology and gene expression. Determining the actin-based molecular underpinnings in chondrocyte dedifferentiation may enable the specific targeting of stress fibers to promote redifferentiation of passaged cells and improve chondrocyte implantation outcomes. This review focuses on how targeting regulators of actin filament organization may promote the redifferentiation of expanded chondrocytes for implantation, thus increasing potential therapeuticlongevity.</div></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":"143 ","pages":"Article 100847"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468125000143","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Articular cartilage is an avascular tissue that allows for frictionless mobility of joints. Unfortunately, cartilage is incapable of self-repair and any damage leads to degradation in osteoarthritis (OA). Autologous chondrocyte implantation therapies are currently being used to treat focal cartilage defects caused by post-traumatic OA (PTOA). For chondrocyte implantation, chondrocytes are isolated from healthy regions of cartilage from damaged joints, expanded on stiff polystyrene to increase cell number, and reimplanted into damaged areas to stimulate repair. Unfortunately, chondrocyte implantations can ultimately fail as chondrocytes dedifferentiate during expansion. In dedifferentiation, chondrocytes increase in size, elongate, and express contractile cytoskeletal molecules. Furthermore, cells produce a fibroblastic matrix which is biomechanically inferior to articular cartilage matrix. Therefore, developing a greater understanding of dedifferentiation is imperative. In the dedifferentiation process, cellular actin filaments reorganize from a cortical organization into stress fibers. The formation of stress fibers plays a crucial role in chondrocyte dedifferentiation by regulating chondrocyte cell morphology and gene expression. Determining the actin-based molecular underpinnings in chondrocyte dedifferentiation may enable the specific targeting of stress fibers to promote redifferentiation of passaged cells and improve chondrocyte implantation outcomes. This review focuses on how targeting regulators of actin filament organization may promote the redifferentiation of expanded chondrocytes for implantation, thus increasing potential therapeuticlongevity.
期刊介绍:
Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal.
The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest.
The principal subject areas the journal covers are: • embryonic patterning and organogenesis
• human development and congenital malformation
• mechanisms of cell lineage commitment
• tissue homeostasis and oncogenic transformation
• establishment of cellular polarity
• stem cell differentiation
• cell reprogramming mechanisms
• stability of the differentiated state
• cell and tissue interactions in vivo and in vitro
• signal transduction pathways in development and differentiation
• carcinogenesis and cancer
• mechanisms involved in cell growth and division especially relating to cancer
• differentiation in regeneration and ageing
• therapeutic applications of differentiation processes.