Erica M. Ramirez, Kathrin Ebinger , Denis Nam, Christopher Ferrigno, Markus A. Wimmer
{"title":"A machine learning approach using gait parameters to cluster TKA subjects into stable and unstable joints for discovery analysis","authors":"Erica M. Ramirez, Kathrin Ebinger , Denis Nam, Christopher Ferrigno, Markus A. Wimmer","doi":"10.1016/j.knee.2025.02.018","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Patient-reported joint instability after total knee arthroplasty (TKA) is difficult to quantify objectively. Here, we apply machine learning to cluster TKA subjects using nine literature-proposed gait parameters as knee instability predictors and explore cluster reliability and consistency with self-organizing map (SOM) and k-means computation.</div></div><div><h3>Methods</h3><div>Subjects with TKA were retrieved from a data repository, supplemented by TKA patients with self-reported knee instability. Healthy elderly subjects, serving as control group for gait features, were added as well. All subjects have undergone identical gait analysis testing. Gait parameters (in singularity or combination) were used to cluster subjects using SOM and k-means and to identify the best split. Once clustered, comparisons between groups were performed.</div></div><div><h3>Results</h3><div>From all gait parameter combinations tried across the 91 TKA subjects, dynamic joint stiffness (DJS) was the single parameter that gave high reliability, was reasonably consistent, and singularly clustered all but one of the known unstable subjects. This TKA cluster, which contained 11 presumably unstable subjects, showed higher DJS (0.57) than the cluster containing the remaining TKA subjects (0.23). Interestingly, the latter had a DJS similar to that of the 34 healthy subjects (0.24). Additionally, during swing, the cluster with the presumably unstable subjects exhibited lower antero-posterior motion with a higher-than-normal biceps/rectus femoris activity ratio.</div></div><div><h3>Conclusion</h3><div>Using machine learning, DJS emerged as the most powerful variable to cluster TKA subjects into presumably stable and unstable groups based on gait. Future hypothesis driven, prospective research has to verify the observations made in this retrospective discovery work.</div></div>","PeriodicalId":56110,"journal":{"name":"Knee","volume":"54 ","pages":"Pages 167-177"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knee","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968016025000328","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Patient-reported joint instability after total knee arthroplasty (TKA) is difficult to quantify objectively. Here, we apply machine learning to cluster TKA subjects using nine literature-proposed gait parameters as knee instability predictors and explore cluster reliability and consistency with self-organizing map (SOM) and k-means computation.
Methods
Subjects with TKA were retrieved from a data repository, supplemented by TKA patients with self-reported knee instability. Healthy elderly subjects, serving as control group for gait features, were added as well. All subjects have undergone identical gait analysis testing. Gait parameters (in singularity or combination) were used to cluster subjects using SOM and k-means and to identify the best split. Once clustered, comparisons between groups were performed.
Results
From all gait parameter combinations tried across the 91 TKA subjects, dynamic joint stiffness (DJS) was the single parameter that gave high reliability, was reasonably consistent, and singularly clustered all but one of the known unstable subjects. This TKA cluster, which contained 11 presumably unstable subjects, showed higher DJS (0.57) than the cluster containing the remaining TKA subjects (0.23). Interestingly, the latter had a DJS similar to that of the 34 healthy subjects (0.24). Additionally, during swing, the cluster with the presumably unstable subjects exhibited lower antero-posterior motion with a higher-than-normal biceps/rectus femoris activity ratio.
Conclusion
Using machine learning, DJS emerged as the most powerful variable to cluster TKA subjects into presumably stable and unstable groups based on gait. Future hypothesis driven, prospective research has to verify the observations made in this retrospective discovery work.
期刊介绍:
The Knee is an international journal publishing studies on the clinical treatment and fundamental biomechanical characteristics of this joint. The aim of the journal is to provide a vehicle relevant to surgeons, biomedical engineers, imaging specialists, materials scientists, rehabilitation personnel and all those with an interest in the knee.
The topics covered include, but are not limited to:
• Anatomy, physiology, morphology and biochemistry;
• Biomechanical studies;
• Advances in the development of prosthetic, orthotic and augmentation devices;
• Imaging and diagnostic techniques;
• Pathology;
• Trauma;
• Surgery;
• Rehabilitation.