Tonian shoshonitic to ultrapotassic granitoids from Chhotanagpur Gneissic Complex, Eastern Indian Shield: Age, origin and tectonic implications

Ankita Basak , Bapi Goswami , Yoann Gréau , Susmita Das , Chittaranjan Bhattacharyya
{"title":"Tonian shoshonitic to ultrapotassic granitoids from Chhotanagpur Gneissic Complex, Eastern Indian Shield: Age, origin and tectonic implications","authors":"Ankita Basak ,&nbsp;Bapi Goswami ,&nbsp;Yoann Gréau ,&nbsp;Susmita Das ,&nbsp;Chittaranjan Bhattacharyya","doi":"10.1016/j.geogeo.2025.100373","DOIUrl":null,"url":null,"abstract":"<div><div>This work reports petrogenesis of an ultrapotassic granitoid pluton emplaced in the Tonian (949.4 ± 2.3 Ma; new LA-ICPMS zircon U–Pb dating) along a regional shear zone during the post-collisional stage of the Grenvillian Satpura orogeny in Eastern India. The hypidiomorphic granitoids comprise dominantly perthite, microcline (BaO up to 5.85 wt.%), quartz, albite and subordinate amphibole ± diopside ± epidote, allanite, titanite, magnetite ± ilmenite ± biotite ± calcite. Preservation of magmatic epidotes and resorbed boundaries indicates rapid ascent of the granitoid magma. Mylonitic deformation overprinted the southern part of the E-W trending pluton. Magmatic epidote with resorbed boundaries suggests rapid magma ascent. The metaluminous granitoids display affinities with shoshonitic rocks, i.e., enrichment of K<sub>2</sub>O (5.79–11.41 wt.%), large ion lithophile elements (Ba 461.5–7004.8 ppm; Sr 151.3–3548.3 ppm), light rare earth elements (LREE 111.2–1317.7 ppm) and high K<sub>2</sub>O/Na<sub>2</sub>O (1.77–11.35) and La<sub>CN</sub>/Yb<sub>CN</sub> (11.7–82.48) ratios with both negative and positive Eu-anomalies (Eu/Eu* = 0.58–1.43; average 0.89). Trace element characteristics of zircons demonstrate their magmatic origin. Pseudosection modeling displays high temperature (∼800°C), high <em>f</em>O<sub>2</sub> (ΔNNO +0.8 to +2.6), and CO<sub>2</sub> activity (0.9) of the magma that intruded at shallow crustal depth (∼300 MPa). Biotite remains unstable at this physicochemical condition of the shoshonitic magma. Metaluminous nature, high (La/Yb)<sub>CN</sub> (11.7–82.48) and Sr/Y (6.46–277.21) ratios, and Nb/U (avg. 7.4), Ce/Pb (avg. 6.8), Nb/Ta (avg. 11.9), Zr/Hf (avg. 31.61), and low Rb/Sr (0.09–1.39) ratios of these rocks indicate the derivation of the magma from partial melting of the mafic lower crust. Batch melting modeling shows the granitoid magma originated from 5 to 30 % batch melting of K–Ba–Sr-rich shoshonitic mafic (hornblende granulite) source. The study proposes new (Ba + Sr)–Ti–P and Ba–Sr–Ti triangular diagrams for distinguishing mantle vs. crustal sources of post-collisional granitoids.</div></div>","PeriodicalId":100582,"journal":{"name":"Geosystems and Geoenvironment","volume":"4 2","pages":"Article 100373"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosystems and Geoenvironment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772883825000238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work reports petrogenesis of an ultrapotassic granitoid pluton emplaced in the Tonian (949.4 ± 2.3 Ma; new LA-ICPMS zircon U–Pb dating) along a regional shear zone during the post-collisional stage of the Grenvillian Satpura orogeny in Eastern India. The hypidiomorphic granitoids comprise dominantly perthite, microcline (BaO up to 5.85 wt.%), quartz, albite and subordinate amphibole ± diopside ± epidote, allanite, titanite, magnetite ± ilmenite ± biotite ± calcite. Preservation of magmatic epidotes and resorbed boundaries indicates rapid ascent of the granitoid magma. Mylonitic deformation overprinted the southern part of the E-W trending pluton. Magmatic epidote with resorbed boundaries suggests rapid magma ascent. The metaluminous granitoids display affinities with shoshonitic rocks, i.e., enrichment of K2O (5.79–11.41 wt.%), large ion lithophile elements (Ba 461.5–7004.8 ppm; Sr 151.3–3548.3 ppm), light rare earth elements (LREE 111.2–1317.7 ppm) and high K2O/Na2O (1.77–11.35) and LaCN/YbCN (11.7–82.48) ratios with both negative and positive Eu-anomalies (Eu/Eu* = 0.58–1.43; average 0.89). Trace element characteristics of zircons demonstrate their magmatic origin. Pseudosection modeling displays high temperature (∼800°C), high fO2 (ΔNNO +0.8 to +2.6), and CO2 activity (0.9) of the magma that intruded at shallow crustal depth (∼300 MPa). Biotite remains unstable at this physicochemical condition of the shoshonitic magma. Metaluminous nature, high (La/Yb)CN (11.7–82.48) and Sr/Y (6.46–277.21) ratios, and Nb/U (avg. 7.4), Ce/Pb (avg. 6.8), Nb/Ta (avg. 11.9), Zr/Hf (avg. 31.61), and low Rb/Sr (0.09–1.39) ratios of these rocks indicate the derivation of the magma from partial melting of the mafic lower crust. Batch melting modeling shows the granitoid magma originated from 5 to 30 % batch melting of K–Ba–Sr-rich shoshonitic mafic (hornblende granulite) source. The study proposes new (Ba + Sr)–Ti–P and Ba–Sr–Ti triangular diagrams for distinguishing mantle vs. crustal sources of post-collisional granitoids.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信