Mechanochemical vs impregnation synthesis of metal oxides from pyrolyzed MOFs in microwave-assisted methyl levulinate conversion to gamma-valerolactone

IF 5.2 2区 化学 Q1 CHEMISTRY, APPLIED
Lidia López-Gómez , Marina Ronda-Leal , Salvador Pérez-Huertas , Antonio A. Romero , Rafael Luque
{"title":"Mechanochemical vs impregnation synthesis of metal oxides from pyrolyzed MOFs in microwave-assisted methyl levulinate conversion to gamma-valerolactone","authors":"Lidia López-Gómez ,&nbsp;Marina Ronda-Leal ,&nbsp;Salvador Pérez-Huertas ,&nbsp;Antonio A. Romero ,&nbsp;Rafael Luque","doi":"10.1016/j.cattod.2025.115260","DOIUrl":null,"url":null,"abstract":"<div><div>A series of bimetallic oxides (Al<sub>2</sub>O<sub>3</sub>-ZrO<sub>2</sub>@C) has been synthesized using a metal-organic-framework (NH<sub>2</sub>-UiO-66) as a sacrificial agent by both impregnation and mechanochemical methods. The synthesized materials were used in heterogeneous catalysis for the direct conversion of a promising biomass-based building block, i.e., methyl levulinate to γ-valerolactone (GVL). A complete set of characterization, including N<sub>2</sub> adsorption/desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) was carried out. The incorporation of aluminum into the catalyst system led to a significant increase in the GVL yield. The conversion rate achieved with the mechanochemistry-based samples doubled that obtained by the impregnation samples. The material prepared via mechanochemistry with the larger Al<sub>2</sub>O<sub>3</sub>/ZrO<sub>2</sub> ratio exhibited the greatest catalytic activity, i.e., 79 % conversion and 87 % selectivity. GVL is considered a promising biomass-derived platform chemical for numerous applications, including bio-materials, fuels or fuel additives, and various chemical intermediates.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"453 ","pages":"Article 115260"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586125000781","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A series of bimetallic oxides (Al2O3-ZrO2@C) has been synthesized using a metal-organic-framework (NH2-UiO-66) as a sacrificial agent by both impregnation and mechanochemical methods. The synthesized materials were used in heterogeneous catalysis for the direct conversion of a promising biomass-based building block, i.e., methyl levulinate to γ-valerolactone (GVL). A complete set of characterization, including N2 adsorption/desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) was carried out. The incorporation of aluminum into the catalyst system led to a significant increase in the GVL yield. The conversion rate achieved with the mechanochemistry-based samples doubled that obtained by the impregnation samples. The material prepared via mechanochemistry with the larger Al2O3/ZrO2 ratio exhibited the greatest catalytic activity, i.e., 79 % conversion and 87 % selectivity. GVL is considered a promising biomass-derived platform chemical for numerous applications, including bio-materials, fuels or fuel additives, and various chemical intermediates.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Today
Catalysis Today 化学-工程:化工
CiteScore
11.50
自引率
3.80%
发文量
573
审稿时长
2.9 months
期刊介绍: Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues. Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信