Hybridizable discontinuous Galerkin method for nonlinear hyperbolic integro-differential equations

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Riya Jain , Sangita Yadav
{"title":"Hybridizable discontinuous Galerkin method for nonlinear hyperbolic integro-differential equations","authors":"Riya Jain ,&nbsp;Sangita Yadav","doi":"10.1016/j.amc.2025.129393","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present the hybridizable discontinuous Galerkin (HDG) method for a nonlinear hyperbolic integro-differential equation. We discuss the semi-discrete and fully-discrete error analysis of the method. For the semi-discrete error analysis, an extended type mixed Ritz-Volterra projection is introduced for the model problem. It helps to achieve the optimal order of convergence for the unknown scalar variable and its gradient. Further, a local post-processing is performed, which helps to achieve super-convergence. Subsequently, by employing the central difference scheme in the temporal direction and applying the mid-point rule for discretizing the integral term, a fully discrete scheme is formulated, accompanied by its corresponding error estimates. Ultimately, through the examination of numerical examples within two-dimensional domains, computational findings are acquired, thus validating the results of our study.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"498 ","pages":"Article 129393"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001201","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present the hybridizable discontinuous Galerkin (HDG) method for a nonlinear hyperbolic integro-differential equation. We discuss the semi-discrete and fully-discrete error analysis of the method. For the semi-discrete error analysis, an extended type mixed Ritz-Volterra projection is introduced for the model problem. It helps to achieve the optimal order of convergence for the unknown scalar variable and its gradient. Further, a local post-processing is performed, which helps to achieve super-convergence. Subsequently, by employing the central difference scheme in the temporal direction and applying the mid-point rule for discretizing the integral term, a fully discrete scheme is formulated, accompanied by its corresponding error estimates. Ultimately, through the examination of numerical examples within two-dimensional domains, computational findings are acquired, thus validating the results of our study.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信