A systematic review of in vivo brain insulin resistance biomarkers in humans

Q2 Medicine
Graham Reid , Brendan Sargent , Sarah Bauermeister , Amanda Adler , Ivan Koychev
{"title":"A systematic review of in vivo brain insulin resistance biomarkers in humans","authors":"Graham Reid ,&nbsp;Brendan Sargent ,&nbsp;Sarah Bauermeister ,&nbsp;Amanda Adler ,&nbsp;Ivan Koychev","doi":"10.1016/j.bionps.2025.100125","DOIUrl":null,"url":null,"abstract":"<div><div>Type 2 diabetes mellitus (T2DM) is associated with an elevated risk of dementia, prompting interest into the concept of brain-specific insulin resistance. However, the brain's reliance on insulin-independent glucose transporters complicates attempts to measure in vivo brain insulin resistance using the definition of system-wide insulin resistance, which is based on glucose-insulin interactions. In this review, we explore three available biomarkers for evaluating in vivo brain-specific insulin resistance in humans: (1) correlating systemic insulin resistance with brain function, (2) examining functional brain changes after the administration of intranasal insulin, and (3) quantifying insulin signalling proteins in neuronally enriched blood-derived extracellular vesicles. Integrating evidence from these three approaches tentatively suggests for the first time that a comprehensive assessment of the brain's default mode network (DMN), combining these methodologies within a single study, may offer a useful biomarker to quantify in vivo brain-specific insulin resistance in humans. Correlating DMN responses to concentrations of pY-IRS-1 in blood-derived extracellular vesicles would corroborate evidence for a brain-specific biomarker and provide a scalable approach to detecting brain-specific insulin resistance in humans. This advancement would enable in vivo evaluations of insulin resistance in the central nervous system, akin to the precise measurements of systemic insulin resistance seen in T2DM. An established and clearly defined biomarker of in vivo brain insulin resistance in humans would permit further investigation into the links between diabetes and dementia, ultimately bolstering support for secondary dementia prevention by identifying those at higher risk for cognitive decline.</div></div>","PeriodicalId":52767,"journal":{"name":"Biomarkers in Neuropsychiatry","volume":"12 ","pages":"Article 100125"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomarkers in Neuropsychiatry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666144625000073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Type 2 diabetes mellitus (T2DM) is associated with an elevated risk of dementia, prompting interest into the concept of brain-specific insulin resistance. However, the brain's reliance on insulin-independent glucose transporters complicates attempts to measure in vivo brain insulin resistance using the definition of system-wide insulin resistance, which is based on glucose-insulin interactions. In this review, we explore three available biomarkers for evaluating in vivo brain-specific insulin resistance in humans: (1) correlating systemic insulin resistance with brain function, (2) examining functional brain changes after the administration of intranasal insulin, and (3) quantifying insulin signalling proteins in neuronally enriched blood-derived extracellular vesicles. Integrating evidence from these three approaches tentatively suggests for the first time that a comprehensive assessment of the brain's default mode network (DMN), combining these methodologies within a single study, may offer a useful biomarker to quantify in vivo brain-specific insulin resistance in humans. Correlating DMN responses to concentrations of pY-IRS-1 in blood-derived extracellular vesicles would corroborate evidence for a brain-specific biomarker and provide a scalable approach to detecting brain-specific insulin resistance in humans. This advancement would enable in vivo evaluations of insulin resistance in the central nervous system, akin to the precise measurements of systemic insulin resistance seen in T2DM. An established and clearly defined biomarker of in vivo brain insulin resistance in humans would permit further investigation into the links between diabetes and dementia, ultimately bolstering support for secondary dementia prevention by identifying those at higher risk for cognitive decline.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomarkers in Neuropsychiatry
Biomarkers in Neuropsychiatry Medicine-Psychiatry and Mental Health
CiteScore
4.00
自引率
0.00%
发文量
12
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信