Daniel Gerhard Wimmers , Kerstin Huebner , Trevor Dale , Aristeidis Papargyriou , Maximilian Reichert , Arndt Hartmann , Regine Schneider-Stock
{"title":"A floating collagen matrix triggers ring formation and stemness characteristics in human colorectal cancer organoids","authors":"Daniel Gerhard Wimmers , Kerstin Huebner , Trevor Dale , Aristeidis Papargyriou , Maximilian Reichert , Arndt Hartmann , Regine Schneider-Stock","doi":"10.1016/j.prp.2025.155890","DOIUrl":null,"url":null,"abstract":"<div><div>Intestinal organoids reflect the 3D structure and function of their original tissues. Organoid are typically cultured in Matrigel, an extracellular matrix (ECM) mimicking the basement membrane, which is suitable for epithelial cells but does not accurately mimic the tumour microenvironment of colorectal cancer (CRC). The ECM and particularly collagen type I is crucial for CRC progression and invasiveness. Given that efforts to examine CRC organoid invasion in a more physiologically relevant ECM have been limited, we used a floating collagen type I matrix (FC) to study organoid invasion in three patient-derived CRC organoid lines. In FC gel, organoids contract, align, and fuse into macroscopic ring structures, initiating minor branch formation and invasion fronts, phenomena unique for the collagen ECM and otherwise not observed in Matrigel-grown CRC organoids. In contrast to Matrigel, FC organoids showed basal extrusion with improper actin localization, but without change in the organoid polarity. Moreover, small clusters of vital invading cells were observed. Gene expression analysis revealed that the organoids cultured in a FC matrix presented more epithelial and stem cell-like characteristics. This novel technique of cultivating CRC organoids in a FC matrix represents an <em>in-vitro</em> model for studying cancer organization and matrix remodelling with increased organoid stemness potential.</div></div>","PeriodicalId":19916,"journal":{"name":"Pathology, research and practice","volume":"269 ","pages":"Article 155890"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology, research and practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0344033825000822","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intestinal organoids reflect the 3D structure and function of their original tissues. Organoid are typically cultured in Matrigel, an extracellular matrix (ECM) mimicking the basement membrane, which is suitable for epithelial cells but does not accurately mimic the tumour microenvironment of colorectal cancer (CRC). The ECM and particularly collagen type I is crucial for CRC progression and invasiveness. Given that efforts to examine CRC organoid invasion in a more physiologically relevant ECM have been limited, we used a floating collagen type I matrix (FC) to study organoid invasion in three patient-derived CRC organoid lines. In FC gel, organoids contract, align, and fuse into macroscopic ring structures, initiating minor branch formation and invasion fronts, phenomena unique for the collagen ECM and otherwise not observed in Matrigel-grown CRC organoids. In contrast to Matrigel, FC organoids showed basal extrusion with improper actin localization, but without change in the organoid polarity. Moreover, small clusters of vital invading cells were observed. Gene expression analysis revealed that the organoids cultured in a FC matrix presented more epithelial and stem cell-like characteristics. This novel technique of cultivating CRC organoids in a FC matrix represents an in-vitro model for studying cancer organization and matrix remodelling with increased organoid stemness potential.
期刊介绍:
Pathology, Research and Practice provides accessible coverage of the most recent developments across the entire field of pathology: Reviews focus on recent progress in pathology, while Comments look at interesting current problems and at hypotheses for future developments in pathology. Original Papers present novel findings on all aspects of general, anatomic and molecular pathology. Rapid Communications inform readers on preliminary findings that may be relevant for further studies and need to be communicated quickly. Teaching Cases look at new aspects or special diagnostic problems of diseases and at case reports relevant for the pathologist''s practice.