Seed priming with NaCl boosted the glutathione-ascorbate pool to facilitate photosystem-II function and maintain starch in NaCl-primed chickpea under salt stress

IF 6.1 2区 生物学 Q1 PLANT SCIENCES
Alivia Paul , Subhankar Mondal , Debasis Mitra , Koushik Chakraborty , Asok K. Biswas
{"title":"Seed priming with NaCl boosted the glutathione-ascorbate pool to facilitate photosystem-II function and maintain starch in NaCl-primed chickpea under salt stress","authors":"Alivia Paul ,&nbsp;Subhankar Mondal ,&nbsp;Debasis Mitra ,&nbsp;Koushik Chakraborty ,&nbsp;Asok K. Biswas","doi":"10.1016/j.plaphy.2025.109746","DOIUrl":null,"url":null,"abstract":"<div><div>Seed priming with NaCl improved the tissue tolerance nature in moderately salt-tolerant cultivar Anuradha under salt stress. Is an improved tissue tolerance in primed chickpea seedlings supplemented with a boosted antioxidant response? To investigate, a seed priming experiment with sub-lethal salt concentration (50 mM NaCl) was performed with chickpea cv. Anuradha. The morphological, physiological, biochemical, and molecular responses associated with reactive oxygen species, antioxidant activities, photosystem-II (PS-II) efficiency, and starch-sugar metabolism were studied at 150 mM NaCl in hydroponically grown nonprimed and primed seedlings. Primed chickpea seedlings maintained high biomass compared to nonprimed seedlings under stress. High level of reduced ascorbate, glutathione contents and higher activity of glutathione reductase and dehydroascorbate reductase suggested that primed seedling improved the antioxidant response, thus able to maintain low hydrogen peroxide under stress. High photosystem-II (PS-II) efficiency and high electron transport rate of PS-II in primed chickpea seedlings under stress suggested that primed seedlings are able to maintain PS-II function under stress, thus able to retain the flow of electrons for PS-II. A high starch content and low <em>alpha amylase</em> gene expression in primed seedlings suggested that NaCl priming could utilize the reserve food compounds slowly. Overall, this study uncovers that seed priming with NaCl boosted the antioxidant responses in primed chickpea seedlings to stabilize the PS-II function and facilitates the flow of electrons for PS-II, indispensable for energy generation, thus reducing the need of starch degradation and maintaining better starch-sugar equilibrium in primed seedlings.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"222 ","pages":"Article 109746"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825002748","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Seed priming with NaCl improved the tissue tolerance nature in moderately salt-tolerant cultivar Anuradha under salt stress. Is an improved tissue tolerance in primed chickpea seedlings supplemented with a boosted antioxidant response? To investigate, a seed priming experiment with sub-lethal salt concentration (50 mM NaCl) was performed with chickpea cv. Anuradha. The morphological, physiological, biochemical, and molecular responses associated with reactive oxygen species, antioxidant activities, photosystem-II (PS-II) efficiency, and starch-sugar metabolism were studied at 150 mM NaCl in hydroponically grown nonprimed and primed seedlings. Primed chickpea seedlings maintained high biomass compared to nonprimed seedlings under stress. High level of reduced ascorbate, glutathione contents and higher activity of glutathione reductase and dehydroascorbate reductase suggested that primed seedling improved the antioxidant response, thus able to maintain low hydrogen peroxide under stress. High photosystem-II (PS-II) efficiency and high electron transport rate of PS-II in primed chickpea seedlings under stress suggested that primed seedlings are able to maintain PS-II function under stress, thus able to retain the flow of electrons for PS-II. A high starch content and low alpha amylase gene expression in primed seedlings suggested that NaCl priming could utilize the reserve food compounds slowly. Overall, this study uncovers that seed priming with NaCl boosted the antioxidant responses in primed chickpea seedlings to stabilize the PS-II function and facilitates the flow of electrons for PS-II, indispensable for energy generation, thus reducing the need of starch degradation and maintaining better starch-sugar equilibrium in primed seedlings.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信