Shanshan Qu , Jin Wang , Gang Li , Chen Miao , Liming Yan , Wei Wang
{"title":"Structural basis for the dual roles of DPW in lipid and UDP-sugar metabolism during rice anther development","authors":"Shanshan Qu , Jin Wang , Gang Li , Chen Miao , Liming Yan , Wei Wang","doi":"10.1016/j.plaphy.2025.109762","DOIUrl":null,"url":null,"abstract":"<div><div>Fatty acids and uridine diphosphate (UDP)-sugars are essential metabolites involved in the biosynthesis of polysaccharides and lipids, both of which are critical for anther development in plants. Our previous study identified Defective Pollen Wall (DPW), a rice fatty acyl carrier protein reductase (FAR), as a key factor in pollen wall formation. In this study, we demonstrate that the structure of DPW in complex with its cofactor NADP<sup>+</sup> exhibits structural similarities to that of UDP-glucose epimerase (UGE). In <em>vitro</em> enzymatic assays utilizing recombinant DPW confirmed its ability to interconvert UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal) in an NADP(H)-dependent manner. Mutations in conserved NADP(H)-binding residues abolished both DPW's FAR and UGE activities. <em>In vivo</em> assays showed that the <em>dpw</em> mutation causes UDP-Glc accumulation, disrupting the balance between UDP-Glc and UDP-Gal in rice anthers. Taken together, our findings provide insights into the dual roles of DPW in lipid and UDP-sugar metabolism during rice anther development, shedding light on how plants integrate metabolic pathways through multifunctional enzymes to regulate male reproductive development.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"222 ","pages":"Article 109762"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825002906","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Fatty acids and uridine diphosphate (UDP)-sugars are essential metabolites involved in the biosynthesis of polysaccharides and lipids, both of which are critical for anther development in plants. Our previous study identified Defective Pollen Wall (DPW), a rice fatty acyl carrier protein reductase (FAR), as a key factor in pollen wall formation. In this study, we demonstrate that the structure of DPW in complex with its cofactor NADP+ exhibits structural similarities to that of UDP-glucose epimerase (UGE). In vitro enzymatic assays utilizing recombinant DPW confirmed its ability to interconvert UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal) in an NADP(H)-dependent manner. Mutations in conserved NADP(H)-binding residues abolished both DPW's FAR and UGE activities. In vivo assays showed that the dpw mutation causes UDP-Glc accumulation, disrupting the balance between UDP-Glc and UDP-Gal in rice anthers. Taken together, our findings provide insights into the dual roles of DPW in lipid and UDP-sugar metabolism during rice anther development, shedding light on how plants integrate metabolic pathways through multifunctional enzymes to regulate male reproductive development.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.