Integrated analysis of transcriptome and metabolome reveals the molecular basis of quality differences in Alpinia oxyphylla Miq. From geo-authentic and non-authentic areas
Kun Pan , Yunping Qu , Jiaqi Liu , Xiaodan Yu , Yuping Jia , Bingmiao Gao , Shoubai Liu , Xilong Zheng , Tao Yang
{"title":"Integrated analysis of transcriptome and metabolome reveals the molecular basis of quality differences in Alpinia oxyphylla Miq. From geo-authentic and non-authentic areas","authors":"Kun Pan , Yunping Qu , Jiaqi Liu , Xiaodan Yu , Yuping Jia , Bingmiao Gao , Shoubai Liu , Xilong Zheng , Tao Yang","doi":"10.1016/j.plaphy.2025.109755","DOIUrl":null,"url":null,"abstract":"<div><div><em>Alpinia oxyphylla</em> Miq., a well-accepted medicinal and edible plant in south China. The primary ingredients of this medicine vary significantly depending on their origin, which profoundly impacts its quality. In this study, a principal component analysis was performed on 17 different planting areas of <em>A. oxyphylla</em>, with nootkatone and kaempferol identified as representative sesquiterpenoids and flavonoids, respectively. To investigate the genes involved in nootkatone and kaempferol biosynthesis, a combined transcriptome and metabolome profiling was carried out on materials sourced from geo-authentic and non-authentic areas. The transcriptome analysis of these two types of accessions identified 96,691 unigenes, with 13,589 genes showing differential expression in both regions. Metabolome analysis revealed 2859 differentially accumulated metabolites across the four pairwise comparisons. Correlation analysis uncovered a number of genes, that associated with the differential biosynthesis of nootkatone and kaempferol in <em>A. oxyphylla</em> fruits from geo-authentic and non-authentic areas. Further investigation highlighted the candidate gene <em>Ao</em>FMO1's ability to heterologously biosynthesize nootkatone in <em>Arabidopsis thaliana</em> leaves. This research lays the groundwork for a deeper understanding of the molecular mechanisms behind the authentication of <em>A. oxyphylla</em>'s quality synthesis, and presents a comprehensive list of candidate genes for future functional studies to enhance the development of high-quality <em>A. oxyphylla</em> varieties rich in medicinal ingredients.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"222 ","pages":"Article 109755"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825002839","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Alpinia oxyphylla Miq., a well-accepted medicinal and edible plant in south China. The primary ingredients of this medicine vary significantly depending on their origin, which profoundly impacts its quality. In this study, a principal component analysis was performed on 17 different planting areas of A. oxyphylla, with nootkatone and kaempferol identified as representative sesquiterpenoids and flavonoids, respectively. To investigate the genes involved in nootkatone and kaempferol biosynthesis, a combined transcriptome and metabolome profiling was carried out on materials sourced from geo-authentic and non-authentic areas. The transcriptome analysis of these two types of accessions identified 96,691 unigenes, with 13,589 genes showing differential expression in both regions. Metabolome analysis revealed 2859 differentially accumulated metabolites across the four pairwise comparisons. Correlation analysis uncovered a number of genes, that associated with the differential biosynthesis of nootkatone and kaempferol in A. oxyphylla fruits from geo-authentic and non-authentic areas. Further investigation highlighted the candidate gene AoFMO1's ability to heterologously biosynthesize nootkatone in Arabidopsis thaliana leaves. This research lays the groundwork for a deeper understanding of the molecular mechanisms behind the authentication of A. oxyphylla's quality synthesis, and presents a comprehensive list of candidate genes for future functional studies to enhance the development of high-quality A. oxyphylla varieties rich in medicinal ingredients.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.