{"title":"Production and recycling of the cutting edge material of gallium: A review","authors":"Tangzhen Guan , Minghui Guo , Lei Wang , Jing Liu","doi":"10.1016/j.scitotenv.2025.179046","DOIUrl":null,"url":null,"abstract":"<div><div>Gallium, an indispensable scattering element, is driving the development of an array of latest generation functional materials. Due to its exceptionally conductive, fluidic, thermal, flexible, and biocompatible attributes, gallium and its derivatives are increasingly introduced into diverse cutting edge industries. Meanwhile, the aggravated irreconcilable contradiction between the rapid growth of gallium consumption and the severe shortage of gallium resources also brings about big concern regarding its availability for the coming era. In this review, we conducted a comprehensive examination on the global distribution and reserves of gallium which indicates sporadic locations and low concentrations of gallium, highlighting the daunting challenge of extracting gallium. Following that, extensive assessments of gallium production and recovery treatments were presented, ranging from ore mining to high-purity gallium extraction, from major to minor production methods, and from primary gallium extraction to recycling gallium reclamation. Finally, based on evaluating ongoing trends over the field, a forecast of the future gallium production and recycling was given. Potential barriers and their corresponding mitigation strategies were interpreted.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"971 ","pages":"Article 179046"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725006813","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Gallium, an indispensable scattering element, is driving the development of an array of latest generation functional materials. Due to its exceptionally conductive, fluidic, thermal, flexible, and biocompatible attributes, gallium and its derivatives are increasingly introduced into diverse cutting edge industries. Meanwhile, the aggravated irreconcilable contradiction between the rapid growth of gallium consumption and the severe shortage of gallium resources also brings about big concern regarding its availability for the coming era. In this review, we conducted a comprehensive examination on the global distribution and reserves of gallium which indicates sporadic locations and low concentrations of gallium, highlighting the daunting challenge of extracting gallium. Following that, extensive assessments of gallium production and recovery treatments were presented, ranging from ore mining to high-purity gallium extraction, from major to minor production methods, and from primary gallium extraction to recycling gallium reclamation. Finally, based on evaluating ongoing trends over the field, a forecast of the future gallium production and recycling was given. Potential barriers and their corresponding mitigation strategies were interpreted.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.