Hydrogen production and storage as ammonia by supercritical water gasification of biomass

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
F.J. Gutiérrez Ortiz, F. López-Guirao
{"title":"Hydrogen production and storage as ammonia by supercritical water gasification of biomass","authors":"F.J. Gutiérrez Ortiz,&nbsp;F. López-Guirao","doi":"10.1016/j.enconman.2025.119654","DOIUrl":null,"url":null,"abstract":"<div><div>A new energy self-sufficient process is designed, developed, and evaluated to produce hydrogen by supercritical water gasification from wet biomass or organic waste and store it as ammonia, produced by the Haber-Bosch process, using energy integration to establish an upper limit for the application of both technologies with improved overall energy efficiency. The assessment of the process is carried out with the aid of Aspen Plus. For an aqueous feed of 10 t/h with 32 wt% biomass, 745 kg/h of almost pure ammonia (equivalent to 132 kg/h of hydrogen) are produced, sequestrating 3 t/h of carbon dioxide and generating 1.8 MW of net electrical power. Exergy efficiencies are between 33.6 % and 35.4 %, and energy efficiencies are between 37.0 % and 40.0 %. The distribution of lost exergy flow for sets of process units, so the main lost work occurs in reactors (about 51 %) and heat exchangers (about 26 %). In addition, a techno-economic analysis of the process is carried out, concluding that the feed should be ten times higher (100 t/h) to achieve competitiveness with minimum selling prices for ammonia and hydrogen of 0.70 $/kg and 3.90 €/kg, respectively.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"332 ","pages":"Article 119654"},"PeriodicalIF":9.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425001773","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

A new energy self-sufficient process is designed, developed, and evaluated to produce hydrogen by supercritical water gasification from wet biomass or organic waste and store it as ammonia, produced by the Haber-Bosch process, using energy integration to establish an upper limit for the application of both technologies with improved overall energy efficiency. The assessment of the process is carried out with the aid of Aspen Plus. For an aqueous feed of 10 t/h with 32 wt% biomass, 745 kg/h of almost pure ammonia (equivalent to 132 kg/h of hydrogen) are produced, sequestrating 3 t/h of carbon dioxide and generating 1.8 MW of net electrical power. Exergy efficiencies are between 33.6 % and 35.4 %, and energy efficiencies are between 37.0 % and 40.0 %. The distribution of lost exergy flow for sets of process units, so the main lost work occurs in reactors (about 51 %) and heat exchangers (about 26 %). In addition, a techno-economic analysis of the process is carried out, concluding that the feed should be ten times higher (100 t/h) to achieve competitiveness with minimum selling prices for ammonia and hydrogen of 0.70 $/kg and 3.90 €/kg, respectively.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信