Effect of food simulator on barrier properties of polyvinyl alcohol packaging film

IF 5.3 2区 农林科学 Q1 ENGINEERING, CHEMICAL
Siwen Wang , Jin Liang , Jun Wang , Fang Duan
{"title":"Effect of food simulator on barrier properties of polyvinyl alcohol packaging film","authors":"Siwen Wang ,&nbsp;Jin Liang ,&nbsp;Jun Wang ,&nbsp;Fang Duan","doi":"10.1016/j.jfoodeng.2025.112546","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to investigate the impact of food components on the performance of polyvinyl alcohol (PVA)-coated composite films. Food simulants, including deionized water representing aqueous food, 3% acetic acid representing acidic food, and 50% ethanol representing alcoholic food, were used for pouching and packaging of the PVA-coated composite films. The films were also subjected to water bath (80 °C for 30 min) and accelerated treatment (80 °C for 60 min and 100 °C for 60 min) to simulate industrial pasteurization and more severe damage. The morphology, chemical composition, thermal stability, barrier properties, and other characteristics of the materials were evaluated. In this study, it was found that all three simulants had an effect on the barrier properties of the films. Among them, acidic and alcoholic simulants had a relatively large impact on the oxygen barrier properties of the films, with decreases of 44.99% and 79.48%, respectively. The alcoholic simulant also had the largest effect on the moisture barrier properties of the films, with a decrease of 28.33%. Additionally, the addition of the three food simulants led to a significant reduction in the mechanical properties of the films and a significant decrease in transmittance. Microstructural characterization revealed that the above performance changes originated from the harsh conditions when the food simulants first contacted the base film, damaging the internal structure. Subsequently, the barrier layer PVA was penetrated and dissolved, thus affecting the performance. The fragmentation of thin film crystals and the penetration of the simulant were also evidenced by XRD and FTIR. These findings emphasize the influence of food itself on widely used PVA and provide guidance for the design of future PVA high-barrier packaging films.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"396 ","pages":"Article 112546"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877425000810","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to investigate the impact of food components on the performance of polyvinyl alcohol (PVA)-coated composite films. Food simulants, including deionized water representing aqueous food, 3% acetic acid representing acidic food, and 50% ethanol representing alcoholic food, were used for pouching and packaging of the PVA-coated composite films. The films were also subjected to water bath (80 °C for 30 min) and accelerated treatment (80 °C for 60 min and 100 °C for 60 min) to simulate industrial pasteurization and more severe damage. The morphology, chemical composition, thermal stability, barrier properties, and other characteristics of the materials were evaluated. In this study, it was found that all three simulants had an effect on the barrier properties of the films. Among them, acidic and alcoholic simulants had a relatively large impact on the oxygen barrier properties of the films, with decreases of 44.99% and 79.48%, respectively. The alcoholic simulant also had the largest effect on the moisture barrier properties of the films, with a decrease of 28.33%. Additionally, the addition of the three food simulants led to a significant reduction in the mechanical properties of the films and a significant decrease in transmittance. Microstructural characterization revealed that the above performance changes originated from the harsh conditions when the food simulants first contacted the base film, damaging the internal structure. Subsequently, the barrier layer PVA was penetrated and dissolved, thus affecting the performance. The fragmentation of thin film crystals and the penetration of the simulant were also evidenced by XRD and FTIR. These findings emphasize the influence of food itself on widely used PVA and provide guidance for the design of future PVA high-barrier packaging films.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Food Engineering
Journal of Food Engineering 工程技术-工程:化工
CiteScore
11.80
自引率
5.50%
发文量
275
审稿时长
24 days
期刊介绍: The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including: Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes. Accounts of food engineering achievements are of particular value.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信