Gonzalo García-Vidable , Nicolás Amigo , Francisco E. Palay , Rafael I. González , Franco Aquistapace , Eduardo M. Bringa
{"title":"Simulation of the mechanical properties of crystalline diamond nanoparticles with an amorphous carbon shell","authors":"Gonzalo García-Vidable , Nicolás Amigo , Francisco E. Palay , Rafael I. González , Franco Aquistapace , Eduardo M. Bringa","doi":"10.1016/j.diamond.2025.112188","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical behavior of core/shell nanoparticles (CS-NPs) with a cubic diamond crystalline core and an amorphous carbon shell was investigated through molecular dynamics simulations using indentation tests. Different CS-NPs were considered, all with a 10 nm core diameter but varying shell thicknesses ranging from 0.0 to 6.5 nm. Indentation revealed a similar elastic response followed by plastic deformation. Increasing shell thickness resulted in a softening effect, with reductions in both maximum and flow contact stress. The MultiSOM machine learning algorithm was used to detect the evolution of several phases in the initially cubic-diamond NP core. Analysis of the plastic deformation mechanisms revealed dislocation nucleation and amorphization within the core, pushing atoms at the core-shell interface and inducing shear transformation zones, which did not evolve into shear bands crossing the shell as observed in other amorphous materials. The degree of strain localization in the amorphous shell increased with shell thickness. Therefore, as shell thickness increased, amorphous shell deformation accommodated a larger fraction of the strain, decreasing dislocation nucleation but allowing more extensive amorphization in the core, with no dislocations at large strain for the thickest shell studied. These results highlight the key role of amorphous shell thickness in determining the elastic and plastic deformation behavior of CS-NPs. Shell thickness is a critical factor in both the onset of plasticity and the nature of deformation mechanisms.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"154 ","pages":"Article 112188"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963525002456","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical behavior of core/shell nanoparticles (CS-NPs) with a cubic diamond crystalline core and an amorphous carbon shell was investigated through molecular dynamics simulations using indentation tests. Different CS-NPs were considered, all with a 10 nm core diameter but varying shell thicknesses ranging from 0.0 to 6.5 nm. Indentation revealed a similar elastic response followed by plastic deformation. Increasing shell thickness resulted in a softening effect, with reductions in both maximum and flow contact stress. The MultiSOM machine learning algorithm was used to detect the evolution of several phases in the initially cubic-diamond NP core. Analysis of the plastic deformation mechanisms revealed dislocation nucleation and amorphization within the core, pushing atoms at the core-shell interface and inducing shear transformation zones, which did not evolve into shear bands crossing the shell as observed in other amorphous materials. The degree of strain localization in the amorphous shell increased with shell thickness. Therefore, as shell thickness increased, amorphous shell deformation accommodated a larger fraction of the strain, decreasing dislocation nucleation but allowing more extensive amorphization in the core, with no dislocations at large strain for the thickest shell studied. These results highlight the key role of amorphous shell thickness in determining the elastic and plastic deformation behavior of CS-NPs. Shell thickness is a critical factor in both the onset of plasticity and the nature of deformation mechanisms.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.