Rong Lin , Kunhong Xiao , Boyuan Wen , Huazhi Ma , Yuting Hu , Yan Huang
{"title":"Spectral and color temperature dependence of LED exposure on retinal damage and the protective effects of neohesperidin","authors":"Rong Lin , Kunhong Xiao , Boyuan Wen , Huazhi Ma , Yuting Hu , Yan Huang","doi":"10.1016/j.jphotobiol.2025.113148","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>To investigate the effects of LEDs with different spectra and correlated color temperatures on the retina, as well as the protective role of neohesperidin(NHP).</div></div><div><h3>Methods</h3><div>Sprague-Dawley (SD) rats and 661W cells were divided into four groups: 2700K conventional LED group (CL-2700K), 5000K conventional LED group (CL-5000K), 2700K full-spectrum LED group (FL-2700K) and 5000K full-spectrum LED group (FL-5000K). Retinal damage was detected using Hematoxylin and Eosin (HE) staining, while the expression of mitochondria-related autophagy proteins in retinas was determined through immunofluorescence. The CCK-8 assay, ROS detection, mitochondrial membrane potential assessment and Annexin V-FITC/PI staining were used to assess damage in 661W cell. RT-qPCR and Western blotting were employed to detect the expression of related genes and proteins.</div></div><div><h3>Results</h3><div>After LED exposure, retinal tissue damage was observed in the rats. 661W cells exhibited upregulated levels of ROS, JC-1 monomer aggregation, and cell apoptosis. Notably, the FL-2700K exhibited the least severe damage. Intervention experiments revealed that 25 μM NHP reduced ROS levels and JC-1 aggregation,as well asmitigated apoptosis levels. Further studies indicated that NHP maintained mitochondrial autophagy at normal levels in 661W cells across all groups and reduced the mRNA expression of Crx and Arrestin-1.</div></div><div><h3>Conclusions</h3><div>2700K full-spectrum LEDs can mitigate photochemical damage in vivo and in vitro. NHP is a promising drug for treating photochemical damage.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"266 ","pages":"Article 113148"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of photochemistry and photobiology. B, Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S101113442500051X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
To investigate the effects of LEDs with different spectra and correlated color temperatures on the retina, as well as the protective role of neohesperidin(NHP).
Methods
Sprague-Dawley (SD) rats and 661W cells were divided into four groups: 2700K conventional LED group (CL-2700K), 5000K conventional LED group (CL-5000K), 2700K full-spectrum LED group (FL-2700K) and 5000K full-spectrum LED group (FL-5000K). Retinal damage was detected using Hematoxylin and Eosin (HE) staining, while the expression of mitochondria-related autophagy proteins in retinas was determined through immunofluorescence. The CCK-8 assay, ROS detection, mitochondrial membrane potential assessment and Annexin V-FITC/PI staining were used to assess damage in 661W cell. RT-qPCR and Western blotting were employed to detect the expression of related genes and proteins.
Results
After LED exposure, retinal tissue damage was observed in the rats. 661W cells exhibited upregulated levels of ROS, JC-1 monomer aggregation, and cell apoptosis. Notably, the FL-2700K exhibited the least severe damage. Intervention experiments revealed that 25 μM NHP reduced ROS levels and JC-1 aggregation,as well asmitigated apoptosis levels. Further studies indicated that NHP maintained mitochondrial autophagy at normal levels in 661W cells across all groups and reduced the mRNA expression of Crx and Arrestin-1.
Conclusions
2700K full-spectrum LEDs can mitigate photochemical damage in vivo and in vitro. NHP is a promising drug for treating photochemical damage.
期刊介绍:
The Journal of Photochemistry and Photobiology B: Biology provides a forum for the publication of papers relating to the various aspects of photobiology, as well as a means for communication in this multidisciplinary field.
The scope includes:
- Bioluminescence
- Chronobiology
- DNA repair
- Environmental photobiology
- Nanotechnology in photobiology
- Photocarcinogenesis
- Photochemistry of biomolecules
- Photodynamic therapy
- Photomedicine
- Photomorphogenesis
- Photomovement
- Photoreception
- Photosensitization
- Photosynthesis
- Phototechnology
- Spectroscopy of biological systems
- UV and visible radiation effects and vision.