Photini Papaioakeim , Efstathios A. Elia , Agapios Agapiou
{"title":"Monitoring of 12 DBPs in drinking water using a microextraction TD-GC-MS method","authors":"Photini Papaioakeim , Efstathios A. Elia , Agapios Agapiou","doi":"10.1016/j.sampre.2025.100168","DOIUrl":null,"url":null,"abstract":"<div><div>Disinfection of drinking water is essential for ensuring public health; however, it leads to the formation of various undesirable disinfection by-products (DBPs). To comply with the recent European Union (EU) drinking water directive legislation (EU 2020/2184), a headspace HiSorb thermal desorption-gas chromatography-mass spectrometry (HS-HiSorb-TD-GC-MS) method was developed and validated for the quantification of 12 DBPs in drinking water. The HS-HiSorb-TD-GC-MS method presented high sensitivity and selectivity, linearity (1–120 ppb), limit of detection (LOD) 0.33–3.33 ppb, and limit of quantification (LOQ) 1–10 ppb. The method's accuracy was verified at three different concentrations, showing good repeatability (intra-day) and reproducibility (inter-day), ranging from 1.3 to 10 % and 3.3–15 %, respectively. Additionally, the method's recovery rates, at 10 ppb and 50 ppb, were estimated between 80 and 120 %. Water sample stability was also examined at various temperatures (4°C, 25°C, -20°C). The HS-HiSorb-TD-GC-MS method was used to investigate the presence of DBPs in tap water samples, highlighting its applicability to drinking water monitoring. The development of a green analytical method based on a sorbent-based sample preparation technique, contributes to sustainable and green analytical chemistry.</div></div>","PeriodicalId":100052,"journal":{"name":"Advances in Sample Preparation","volume":"14 ","pages":"Article 100168"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Sample Preparation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277258202500021X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Disinfection of drinking water is essential for ensuring public health; however, it leads to the formation of various undesirable disinfection by-products (DBPs). To comply with the recent European Union (EU) drinking water directive legislation (EU 2020/2184), a headspace HiSorb thermal desorption-gas chromatography-mass spectrometry (HS-HiSorb-TD-GC-MS) method was developed and validated for the quantification of 12 DBPs in drinking water. The HS-HiSorb-TD-GC-MS method presented high sensitivity and selectivity, linearity (1–120 ppb), limit of detection (LOD) 0.33–3.33 ppb, and limit of quantification (LOQ) 1–10 ppb. The method's accuracy was verified at three different concentrations, showing good repeatability (intra-day) and reproducibility (inter-day), ranging from 1.3 to 10 % and 3.3–15 %, respectively. Additionally, the method's recovery rates, at 10 ppb and 50 ppb, were estimated between 80 and 120 %. Water sample stability was also examined at various temperatures (4°C, 25°C, -20°C). The HS-HiSorb-TD-GC-MS method was used to investigate the presence of DBPs in tap water samples, highlighting its applicability to drinking water monitoring. The development of a green analytical method based on a sorbent-based sample preparation technique, contributes to sustainable and green analytical chemistry.