{"title":"Depth estimation of internal defects from a sensitive frequency using thermal wave radar","authors":"Lijun Zhuo , Yifan Xu , Jianguo Zhu , Hongchu Chen , Qiang Yang","doi":"10.1016/j.ndteint.2025.103367","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal wave radar is one of the active infrared thermographic techniques that detects defects by applying a broadband frequency modulated excitation and cross-correlation. Although it outperforms conventional methods in the depth resolvability and defect detectability, there still exist difficulties in the estimation of defect depth due to the distortion effect of heat diffusion and noises. This work aims to estimate the depth of an internal defect using a new parameter instead of the widely used blind frequency, namely the sensitive frequency, at which a maximum phase contrast is reached. The thermal wave radar is implemented by using a linear frequency modulated laser excitation. The phase contrast in function of frequency is obtained from the dual orthogonal demodulation algorithm. A linear relationship with calibrated coefficients is established between the sensitive frequency and the reciprocal of the square of depth. The effect of defect size on the linear relationship is studied, and a correction of the linear relationship is proposed to improve the accuracy of depth estimation. The proposed method is numerically verified and experimentally validated, and the results illustrated that the depths of defects with various aspect ratios can be well estimated.</div></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"154 ","pages":"Article 103367"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869525000489","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal wave radar is one of the active infrared thermographic techniques that detects defects by applying a broadband frequency modulated excitation and cross-correlation. Although it outperforms conventional methods in the depth resolvability and defect detectability, there still exist difficulties in the estimation of defect depth due to the distortion effect of heat diffusion and noises. This work aims to estimate the depth of an internal defect using a new parameter instead of the widely used blind frequency, namely the sensitive frequency, at which a maximum phase contrast is reached. The thermal wave radar is implemented by using a linear frequency modulated laser excitation. The phase contrast in function of frequency is obtained from the dual orthogonal demodulation algorithm. A linear relationship with calibrated coefficients is established between the sensitive frequency and the reciprocal of the square of depth. The effect of defect size on the linear relationship is studied, and a correction of the linear relationship is proposed to improve the accuracy of depth estimation. The proposed method is numerically verified and experimentally validated, and the results illustrated that the depths of defects with various aspect ratios can be well estimated.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.