Jing Ma , Chunhong Lv , Zheng Gong , Kai Zhang , Shu Wang , Rui Li , Kang Chen , Feng Zhu , Deya Wang , Zhigang Qiu , Chengshi Ding
{"title":"Promotion of microplastic degradation on the conjugative transfer of antibiotic resistance genes in the gut of macrobenthic invertebrates","authors":"Jing Ma , Chunhong Lv , Zheng Gong , Kai Zhang , Shu Wang , Rui Li , Kang Chen , Feng Zhu , Deya Wang , Zhigang Qiu , Chengshi Ding","doi":"10.1016/j.ecoenv.2025.117999","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastics and antibiotic resistance genes are two new pollutants in water environments, and they have potential risks to human health and ecological safety. On the basis of the accumulation of pollutants and microorganisms in sediment, macrobenthic invertebrates are considered as potential practitioners of microplastic degradation and antibiotic resistance gene (ARG) transfer. However, whether microplastic degradation can affect ARG transfer in aquatic environments, especially in the gut of macrobenthic invertebrates, remains unclear. In this study, we demonstrated that microplastics including polyethylene terephthalate (PET), polyvinyl chloride(PVC), polyamide (PA), polystyrene (PS), polypropylene (PP), polyethylene (PE), and polyurethane (PU), and ARGs including <em>tetA</em>, <em>sul1</em>, <em>sul2</em>, and <em>sul3</em> were widely distributed in sediment and benthic invertebrates in Nansi lake. The distribution of ARGs was related to the number and size of microplastic particles. In particular, it was found for the first time that the content of ARGs corresponding to individual particles was linearly and negatively correlated with the size of microplastics. The results of animal feeding experiments showed that microplastic degradation in the gut of Chironomidae larvae could promote the conjugative transfer of ARGs. The underlying molecular mechanism was SOS response. This study provides a new method for the analysis of the interaction effect of multiple pollutants in freshwater environments.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"293 ","pages":"Article 117999"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651325003355","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics and antibiotic resistance genes are two new pollutants in water environments, and they have potential risks to human health and ecological safety. On the basis of the accumulation of pollutants and microorganisms in sediment, macrobenthic invertebrates are considered as potential practitioners of microplastic degradation and antibiotic resistance gene (ARG) transfer. However, whether microplastic degradation can affect ARG transfer in aquatic environments, especially in the gut of macrobenthic invertebrates, remains unclear. In this study, we demonstrated that microplastics including polyethylene terephthalate (PET), polyvinyl chloride(PVC), polyamide (PA), polystyrene (PS), polypropylene (PP), polyethylene (PE), and polyurethane (PU), and ARGs including tetA, sul1, sul2, and sul3 were widely distributed in sediment and benthic invertebrates in Nansi lake. The distribution of ARGs was related to the number and size of microplastic particles. In particular, it was found for the first time that the content of ARGs corresponding to individual particles was linearly and negatively correlated with the size of microplastics. The results of animal feeding experiments showed that microplastic degradation in the gut of Chironomidae larvae could promote the conjugative transfer of ARGs. The underlying molecular mechanism was SOS response. This study provides a new method for the analysis of the interaction effect of multiple pollutants in freshwater environments.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.