PlotToSat: A tool for generating time-series signatures from Sentinel-1 and Sentinel-2 at field-based plots for machine learning applications

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Milto Miltiadou , Stuart Grieve , Paloma Ruiz-Benito , Julen Astigarraga , Verónica Cruz-Alonso , Julián Tijerín Triviño , Emily R. Lines
{"title":"PlotToSat: A tool for generating time-series signatures from Sentinel-1 and Sentinel-2 at field-based plots for machine learning applications","authors":"Milto Miltiadou ,&nbsp;Stuart Grieve ,&nbsp;Paloma Ruiz-Benito ,&nbsp;Julen Astigarraga ,&nbsp;Verónica Cruz-Alonso ,&nbsp;Julián Tijerín Triviño ,&nbsp;Emily R. Lines","doi":"10.1016/j.envsoft.2025.106395","DOIUrl":null,"url":null,"abstract":"<div><div>PlotToSat offers a practical and time efficient way to the challenge of extracting time-series from multiple Earth Observation (EO) datasets at numerous plots spread across a landscape. This opens up new opportunities to understand and model various ecosystems. Regarding forest ecology, plot networks play a vital role in monitoring and understanding the dynamics of forest ecosystems. These networks often contain thousands of plots arranged systematically to represent an ecosystem. Combining field data collected at plots with EO time-series will allow us to better understand phenology and ecosystem composition, structure and distribution. Linking plot networks with EO data without PlotToSat is time consuming and computational expensive because plots are small and spread out, requiring data from multiple satellite tiles. PlotToSat processed a full year of multi-tile Sentinel-1 and Sentinel-2 data (estimated 18.3TB) at 15,962 plots from the fourth Spanish Forest Inventory in less than 24 h. PlotToSat, implemented using the Python API of Google Earth Engine, offers a new and unique workflow that is innovative due to its efficient, scalable and adaptable implementation. It supports Sentinel-1 and Sentinel-2 data, but its flexible design eases integration of additional EO datasets. New environmental modelling is expected to emerge facilitating EO time-series analyses and investigating interactive effects of environmental drivers.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"188 ","pages":"Article 106395"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225000799","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

PlotToSat offers a practical and time efficient way to the challenge of extracting time-series from multiple Earth Observation (EO) datasets at numerous plots spread across a landscape. This opens up new opportunities to understand and model various ecosystems. Regarding forest ecology, plot networks play a vital role in monitoring and understanding the dynamics of forest ecosystems. These networks often contain thousands of plots arranged systematically to represent an ecosystem. Combining field data collected at plots with EO time-series will allow us to better understand phenology and ecosystem composition, structure and distribution. Linking plot networks with EO data without PlotToSat is time consuming and computational expensive because plots are small and spread out, requiring data from multiple satellite tiles. PlotToSat processed a full year of multi-tile Sentinel-1 and Sentinel-2 data (estimated 18.3TB) at 15,962 plots from the fourth Spanish Forest Inventory in less than 24 h. PlotToSat, implemented using the Python API of Google Earth Engine, offers a new and unique workflow that is innovative due to its efficient, scalable and adaptable implementation. It supports Sentinel-1 and Sentinel-2 data, but its flexible design eases integration of additional EO datasets. New environmental modelling is expected to emerge facilitating EO time-series analyses and investigating interactive effects of environmental drivers.
PlotToSat:一个从Sentinel-1和Sentinel-2在基于现场的地块上生成时间序列签名的工具,用于机器学习应用
PlotToSat提供了一种实用且省时的方法来解决从多个地球观测(EO)数据集中提取时间序列的挑战,这些数据集分布在景观中的多个地块上。这为理解和模拟各种生态系统提供了新的机会。在森林生态学中,样地网络在监测和了解森林生态系统动态方面发挥着至关重要的作用。这些网络通常包含成千上万的地块,系统地排列以代表一个生态系统。将样地的野外数据与EO时间序列相结合,可以更好地了解物候和生态系统的组成、结构和分布。在没有PlotToSat的情况下,将地块网络与EO数据连接起来既耗时又昂贵,因为地块很小且分散,需要来自多个卫星瓦片的数据。PlotToSat在不到24小时的时间内处理了来自第四次西班牙森林调查的15,962个地块的Sentinel-1和Sentinel-2的全年多瓦数据(估计18.3TB)。PlotToSat使用b谷歌Earth Engine的Python API实现,提供了一种新的独特工作流程,由于其高效,可扩展和适应性强而具有创新性。它支持Sentinel-1和Sentinel-2数据,但其灵活的设计简化了额外EO数据集的集成。预计将出现新的环境模型,以促进环境观测时间序列分析和调查环境驱动因素的相互影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信