PlotToSat: A tool for generating time-series signatures from Sentinel-1 and Sentinel-2 at field-based plots for machine learning applications

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Milto Miltiadou , Stuart Grieve , Paloma Ruiz-Benito , Julen Astigarraga , Verónica Cruz-Alonso , Julián Tijerín Triviño , Emily R. Lines
{"title":"PlotToSat: A tool for generating time-series signatures from Sentinel-1 and Sentinel-2 at field-based plots for machine learning applications","authors":"Milto Miltiadou ,&nbsp;Stuart Grieve ,&nbsp;Paloma Ruiz-Benito ,&nbsp;Julen Astigarraga ,&nbsp;Verónica Cruz-Alonso ,&nbsp;Julián Tijerín Triviño ,&nbsp;Emily R. Lines","doi":"10.1016/j.envsoft.2025.106395","DOIUrl":null,"url":null,"abstract":"<div><div>PlotToSat offers a practical and time efficient way to the challenge of extracting time-series from multiple Earth Observation (EO) datasets at numerous plots spread across a landscape. This opens up new opportunities to understand and model various ecosystems. Regarding forest ecology, plot networks play a vital role in monitoring and understanding the dynamics of forest ecosystems. These networks often contain thousands of plots arranged systematically to represent an ecosystem. Combining field data collected at plots with EO time-series will allow us to better understand phenology and ecosystem composition, structure and distribution. Linking plot networks with EO data without PlotToSat is time consuming and computational expensive because plots are small and spread out, requiring data from multiple satellite tiles. PlotToSat processed a full year of multi-tile Sentinel-1 and Sentinel-2 data (estimated 18.3TB) at 15,962 plots from the fourth Spanish Forest Inventory in less than 24 h. PlotToSat, implemented using the Python API of Google Earth Engine, offers a new and unique workflow that is innovative due to its efficient, scalable and adaptable implementation. It supports Sentinel-1 and Sentinel-2 data, but its flexible design eases integration of additional EO datasets. New environmental modelling is expected to emerge facilitating EO time-series analyses and investigating interactive effects of environmental drivers.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"188 ","pages":"Article 106395"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225000799","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

PlotToSat offers a practical and time efficient way to the challenge of extracting time-series from multiple Earth Observation (EO) datasets at numerous plots spread across a landscape. This opens up new opportunities to understand and model various ecosystems. Regarding forest ecology, plot networks play a vital role in monitoring and understanding the dynamics of forest ecosystems. These networks often contain thousands of plots arranged systematically to represent an ecosystem. Combining field data collected at plots with EO time-series will allow us to better understand phenology and ecosystem composition, structure and distribution. Linking plot networks with EO data without PlotToSat is time consuming and computational expensive because plots are small and spread out, requiring data from multiple satellite tiles. PlotToSat processed a full year of multi-tile Sentinel-1 and Sentinel-2 data (estimated 18.3TB) at 15,962 plots from the fourth Spanish Forest Inventory in less than 24 h. PlotToSat, implemented using the Python API of Google Earth Engine, offers a new and unique workflow that is innovative due to its efficient, scalable and adaptable implementation. It supports Sentinel-1 and Sentinel-2 data, but its flexible design eases integration of additional EO datasets. New environmental modelling is expected to emerge facilitating EO time-series analyses and investigating interactive effects of environmental drivers.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信