{"title":"Adaptive 3D multi-patch isogeometric analysis for orthotropic solid","authors":"Lin Wang , Tiantang Yu , Weihua Fang","doi":"10.1016/j.compstruct.2025.119028","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an adaptive multi-patch isogeometric analysis method with truncated hierarchical NURBS (TH-NURBS) for three-dimensional orthotropic elasticity. TH-NURBS inherit all excellent advantages of truncated hierarchical B-splines (THB-splines) and can achieve exact modeling of arbitrary complex geometry. For accurate description of complex geometry in practical engineering, multi-patch technique is introduced into isogeometric analysis, utilizing Nitsche’s method for patch coupling. In order to establish the adaptive algorithm framework, a recovery-based error estimator is presented based on TH-NURBS. The method is applied to several 3D orthotropic examples with ABAQUS solutions validating its accuracy. We also compare the computation efficiency with that obtained by uniform refinement method to show more efficient performance of the proposed adaptive method.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"360 ","pages":"Article 119028"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026382232500193X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an adaptive multi-patch isogeometric analysis method with truncated hierarchical NURBS (TH-NURBS) for three-dimensional orthotropic elasticity. TH-NURBS inherit all excellent advantages of truncated hierarchical B-splines (THB-splines) and can achieve exact modeling of arbitrary complex geometry. For accurate description of complex geometry in practical engineering, multi-patch technique is introduced into isogeometric analysis, utilizing Nitsche’s method for patch coupling. In order to establish the adaptive algorithm framework, a recovery-based error estimator is presented based on TH-NURBS. The method is applied to several 3D orthotropic examples with ABAQUS solutions validating its accuracy. We also compare the computation efficiency with that obtained by uniform refinement method to show more efficient performance of the proposed adaptive method.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.