Effects of structure and soil parameters on the detection performance of a contact soil surface height detection device

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Haitao Peng , Hanping Mao , Mohamed Farag Taha , Luhua Han , Zhiyu Zuo , Guoxin Ma
{"title":"Effects of structure and soil parameters on the detection performance of a contact soil surface height detection device","authors":"Haitao Peng ,&nbsp;Hanping Mao ,&nbsp;Mohamed Farag Taha ,&nbsp;Luhua Han ,&nbsp;Zhiyu Zuo ,&nbsp;Guoxin Ma","doi":"10.1016/j.compag.2025.110242","DOIUrl":null,"url":null,"abstract":"<div><div>The complex environment of the soil surface in the field poses severe challenges to contact soil surface height detection devices, as the device's vibration and soil subsidence can introduce detection errors. To address these problems, a contact soil surface height detection device based on an angle sensor was designed in this study. The kinematic and dynamic relationships between the device and the soil during the detection process were analyzed, and a dynamic model of the detection device based on the soil-machine system was established. The dynamic process of ‘soil excitation → device vibration → soil subsidence’ during detection was revealed. The Kelvin model was used to describe the transient subsidence process of the ground wheel, and the model's parameters under different soil moisture contents were experimentally determined with a coefficient of determination (<em>R</em><sup>2</sup>) of 0.85 ∼ 0.97. To investigate the influence of soil moisture content and device structural parameters (inertia parameter (<em>J</em>), initial angle (<em>γ</em><sub>0</sub>), prepressure of spring (<em>F<sub>t</sub></em><sub>0</sub>), and spring stiffness coefficient (<em>k</em>)) on the detection results, a simulation model was established using MATLAB/Simulink to simulate the interaction between the detection device and the soil during detection based on the proposed dynamic model, and the simulation results were validated experimentally. The peak overshoot percentage (<em>σ</em>) and steady-state error percentage (<em>Ess</em>) were used as indices. The experimental and simulation indices exhibited a strong linear relationship with a linear regression coefficient of 0.82 ∼ 0.99, confirming the validity of the established model. The results obtained in this study can provide theoretical and technical support for the design, optimization, compensation, and control of contact detection and soil pressure devices with similar structures.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"234 ","pages":"Article 110242"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169925003485","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The complex environment of the soil surface in the field poses severe challenges to contact soil surface height detection devices, as the device's vibration and soil subsidence can introduce detection errors. To address these problems, a contact soil surface height detection device based on an angle sensor was designed in this study. The kinematic and dynamic relationships between the device and the soil during the detection process were analyzed, and a dynamic model of the detection device based on the soil-machine system was established. The dynamic process of ‘soil excitation → device vibration → soil subsidence’ during detection was revealed. The Kelvin model was used to describe the transient subsidence process of the ground wheel, and the model's parameters under different soil moisture contents were experimentally determined with a coefficient of determination (R2) of 0.85 ∼ 0.97. To investigate the influence of soil moisture content and device structural parameters (inertia parameter (J), initial angle (γ0), prepressure of spring (Ft0), and spring stiffness coefficient (k)) on the detection results, a simulation model was established using MATLAB/Simulink to simulate the interaction between the detection device and the soil during detection based on the proposed dynamic model, and the simulation results were validated experimentally. The peak overshoot percentage (σ) and steady-state error percentage (Ess) were used as indices. The experimental and simulation indices exhibited a strong linear relationship with a linear regression coefficient of 0.82 ∼ 0.99, confirming the validity of the established model. The results obtained in this study can provide theoretical and technical support for the design, optimization, compensation, and control of contact detection and soil pressure devices with similar structures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信