{"title":"Dual Neural Network (DuNN) method for elliptic partial differential equations and systems","authors":"Min Liu , Zhiqiang Cai , Karthik Ramani","doi":"10.1016/j.cam.2025.116596","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the Dual Neural Network (DuNN) method, a physics-driven numerical method designed to solve elliptic partial differential equations and systems using deep neural network functions and a dual formulation. The underlying elliptic problem is formulated as an optimization of the complementary energy functional in terms of the dual variable, where the Dirichlet boundary condition is weakly enforced in the formulation. To accurately evaluate the complementary energy functional, we employ a novel discrete divergence operator. This discrete operator preserves the underlying physics and naturally enforces the Neumann boundary condition without penalization. For problems without reaction term, we propose an outer-inner iterative procedure that gradually enforces the equilibrium equation through a pseudo-time approach.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"467 ","pages":"Article 116596"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725001116","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the Dual Neural Network (DuNN) method, a physics-driven numerical method designed to solve elliptic partial differential equations and systems using deep neural network functions and a dual formulation. The underlying elliptic problem is formulated as an optimization of the complementary energy functional in terms of the dual variable, where the Dirichlet boundary condition is weakly enforced in the formulation. To accurately evaluate the complementary energy functional, we employ a novel discrete divergence operator. This discrete operator preserves the underlying physics and naturally enforces the Neumann boundary condition without penalization. For problems without reaction term, we propose an outer-inner iterative procedure that gradually enforces the equilibrium equation through a pseudo-time approach.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.