Nozzle spray-cooling coupled PEMFC stack radiator: Thermal-hydraulic performance and integrated correlations

IF 9 1区 工程技术 Q1 ENERGY & FUELS
M. Mohamed Souby , Rajendran Prabakaran , Sung Chul Kim
{"title":"Nozzle spray-cooling coupled PEMFC stack radiator: Thermal-hydraulic performance and integrated correlations","authors":"M. Mohamed Souby ,&nbsp;Rajendran Prabakaran ,&nbsp;Sung Chul Kim","doi":"10.1016/j.energy.2025.135517","DOIUrl":null,"url":null,"abstract":"<div><div>As the automotive industry shifts towards electrification to combat climate change, proton-exchange membrane fuel cell (PEMFC) stacks present a viable solution for heavy-duty trucks with extended ranges. This paper addresses the challenge of PEMFC cooling using the evaporative effect of exhaust water injected into a stack radiator via a nozzle. An experimental optimization of the thermal-hydraulic characteristics of a nozzle spray cooling-integrated stack radiator under diverse operating conditions was performed. The effect of the nozzle orientation and the impact of air velocity/temperature, coolant flowrate/temperature, and spray flowrate/temperature were investigated. The findings revealed that the effect of nozzle orientation on the performance decreased as the air velocity increased. Furthermore, the spray cooling performance was highly sensitive to changes in the air velocity and spray flow rate, whereas the coolant-side variables had a relatively low impact. The optimal thermal performance was obtained when the spray flowrate was set to 0.30 LPM, and the nozzle was oriented at 60°. Compared with the air-cooled radiator, the heat rejection improved by 167.7 %, whereas the air pressure drop increased by 124.1 % when applying the spray. Two novel empirical correlations were established to accurately predict the heat transfer enhancement and spray cooling efficiency with mean absolute errors of 5.3 % and 2.87 %, respectively. These results highlight the promising application of spray cooling in stack radiators for fuel-cell vehicles, and the correlations provide crucial guidance for the design of spray-cooled radiators for future electric vehicles.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"321 ","pages":"Article 135517"},"PeriodicalIF":9.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225011594","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

As the automotive industry shifts towards electrification to combat climate change, proton-exchange membrane fuel cell (PEMFC) stacks present a viable solution for heavy-duty trucks with extended ranges. This paper addresses the challenge of PEMFC cooling using the evaporative effect of exhaust water injected into a stack radiator via a nozzle. An experimental optimization of the thermal-hydraulic characteristics of a nozzle spray cooling-integrated stack radiator under diverse operating conditions was performed. The effect of the nozzle orientation and the impact of air velocity/temperature, coolant flowrate/temperature, and spray flowrate/temperature were investigated. The findings revealed that the effect of nozzle orientation on the performance decreased as the air velocity increased. Furthermore, the spray cooling performance was highly sensitive to changes in the air velocity and spray flow rate, whereas the coolant-side variables had a relatively low impact. The optimal thermal performance was obtained when the spray flowrate was set to 0.30 LPM, and the nozzle was oriented at 60°. Compared with the air-cooled radiator, the heat rejection improved by 167.7 %, whereas the air pressure drop increased by 124.1 % when applying the spray. Two novel empirical correlations were established to accurately predict the heat transfer enhancement and spray cooling efficiency with mean absolute errors of 5.3 % and 2.87 %, respectively. These results highlight the promising application of spray cooling in stack radiators for fuel-cell vehicles, and the correlations provide crucial guidance for the design of spray-cooled radiators for future electric vehicles.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信