{"title":"Exosome-mediated communication between T cells and dendritic cells: Implications for therapeutic strategies","authors":"Tahereh Kashkoulinejad Kouhi","doi":"10.1016/j.cyto.2025.156914","DOIUrl":null,"url":null,"abstract":"<div><div>Cell communication is crucial for coordinating physiological functions in multicellular organisms, with exosomes playing a significant role. Exosomes mediate intercellular communication by transporting proteins, lipids, and nucleic acids between cells. These small, membrane-bound vesicles, derived from the endosomal pathway, are integral to various biological processes, including signal transmission and cellular behavior modulation. Recent advances highlight the potential of exosomes, especially dendritic cell-derived exosomes (DEXs), for diagnostic and therapeutic applications, particularly in cancer immunotherapy. DEXs are distinguished by their ability to present antigens and stimulate immune responses more effectively than exosomes from other cell types. They carry a cargo rich in immunostimulatory molecules and MHC-peptide complexes, which facilitate robust T-cell activation and enhance tumor-specific immune responses. The unique properties of DEXs, such as their ability to cross biological barriers and resist tumor-induced immunosuppression, position them as promising candidates for therapeutic applications. Here, I review the reports on the bidirectional interaction between dendritic cells and T cells through exosomes and their role in medicine.</div></div>","PeriodicalId":297,"journal":{"name":"Cytokine","volume":"189 ","pages":"Article 156914"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytokine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043466625000614","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cell communication is crucial for coordinating physiological functions in multicellular organisms, with exosomes playing a significant role. Exosomes mediate intercellular communication by transporting proteins, lipids, and nucleic acids between cells. These small, membrane-bound vesicles, derived from the endosomal pathway, are integral to various biological processes, including signal transmission and cellular behavior modulation. Recent advances highlight the potential of exosomes, especially dendritic cell-derived exosomes (DEXs), for diagnostic and therapeutic applications, particularly in cancer immunotherapy. DEXs are distinguished by their ability to present antigens and stimulate immune responses more effectively than exosomes from other cell types. They carry a cargo rich in immunostimulatory molecules and MHC-peptide complexes, which facilitate robust T-cell activation and enhance tumor-specific immune responses. The unique properties of DEXs, such as their ability to cross biological barriers and resist tumor-induced immunosuppression, position them as promising candidates for therapeutic applications. Here, I review the reports on the bidirectional interaction between dendritic cells and T cells through exosomes and their role in medicine.
期刊介绍:
The journal Cytokine has an open access mirror journal Cytokine: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
* Devoted exclusively to the study of the molecular biology, genetics, biochemistry, immunology, genome-wide association studies, pathobiology, diagnostic and clinical applications of all known interleukins, hematopoietic factors, growth factors, cytotoxins, interferons, new cytokines, and chemokines, Cytokine provides comprehensive coverage of cytokines and their mechanisms of actions, 12 times a year by publishing original high quality refereed scientific papers from prominent investigators in both the academic and industrial sectors.
We will publish 3 major types of manuscripts:
1) Original manuscripts describing research results.
2) Basic and clinical reviews describing cytokine actions and regulation.
3) Short commentaries/perspectives on recently published aspects of cytokines, pathogenesis and clinical results.