Optimizing CO2 Electrolysis Performance on Oxygen Vacancy Modulation for LaxSr2–xTiFeO6 Perovskite in a Solid Oxide Electrolysis Cell

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiang Wang, Haoran Wang, Min Li, Xiaolin Xiang, Fuli Wang and Zhibin Yang*, 
{"title":"Optimizing CO2 Electrolysis Performance on Oxygen Vacancy Modulation for LaxSr2–xTiFeO6 Perovskite in a Solid Oxide Electrolysis Cell","authors":"Xiang Wang,&nbsp;Haoran Wang,&nbsp;Min Li,&nbsp;Xiaolin Xiang,&nbsp;Fuli Wang and Zhibin Yang*,&nbsp;","doi":"10.1021/acsami.4c1734410.1021/acsami.4c17344","DOIUrl":null,"url":null,"abstract":"<p >In order to exploit cost-effective and sustainable solid oxide electrolysis cell (SOEC) devices, the selection of efficient and durable fuel electrodes for the application is crucial. Herein, the improvement of the carbon dioxide (CO<sub>2</sub>) electrolysis performance for La<sub><i>x</i></sub>Sr<sub>2–<i>x</i></sub>TiFeO<sub>6</sub> (L<sub><i>x</i></sub>STF, where <i>x</i> = 0, 0.1, 0.2, and 0.3) double perovskite is studied on oxygen vacancy modulation. La doping not only causes lattice expansion in cubic phase perovskite oxides but also significantly increases the content of surface oxygen species. Compared to the original Sr<sub>2</sub>TiFeO<sub>6</sub> (STF) perovskite oxide, the concentration of oxygen vacancies and CO<sub>2</sub> adsorption capacity of the La<sub>0.1</sub>Sr<sub>1.9</sub>TiFeO<sub>6</sub> (LSTF01) material are significantly improved. Based on electrochemical analysis, the doping of La element promotes the oxygen-ion conduction process and facilitates CO<sub>2</sub> adsorption during the CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR), which results in the lowest polarization resistance (<i>R</i><sub>p</sub>) value of 0.70 Ω·cm<sup>2</sup> at open-circuit voltage and the highest peak current density of 0.95 A·cm<sup>–2</sup> at 800 °C for the LSTF01 material. This work provides a highly effective strategy to modulate oxygen vacancies for optimization of the fuel electrode material for SOEC.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 10","pages":"15250–15258 15250–15258"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c17344","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In order to exploit cost-effective and sustainable solid oxide electrolysis cell (SOEC) devices, the selection of efficient and durable fuel electrodes for the application is crucial. Herein, the improvement of the carbon dioxide (CO2) electrolysis performance for LaxSr2–xTiFeO6 (LxSTF, where x = 0, 0.1, 0.2, and 0.3) double perovskite is studied on oxygen vacancy modulation. La doping not only causes lattice expansion in cubic phase perovskite oxides but also significantly increases the content of surface oxygen species. Compared to the original Sr2TiFeO6 (STF) perovskite oxide, the concentration of oxygen vacancies and CO2 adsorption capacity of the La0.1Sr1.9TiFeO6 (LSTF01) material are significantly improved. Based on electrochemical analysis, the doping of La element promotes the oxygen-ion conduction process and facilitates CO2 adsorption during the CO2 reduction reaction (CO2RR), which results in the lowest polarization resistance (Rp) value of 0.70 Ω·cm2 at open-circuit voltage and the highest peak current density of 0.95 A·cm–2 at 800 °C for the LSTF01 material. This work provides a highly effective strategy to modulate oxygen vacancies for optimization of the fuel electrode material for SOEC.

Abstract Image

固体氧化物电解池中LaxSr2-xTiFeO6钙钛矿氧空位调制优化CO2电解性能
为了开发具有成本效益和可持续发展的固体氧化物电解电池(SOEC)装置,选择高效耐用的燃料电极是至关重要的。本文研究了氧空位调制对LaxSr2-xTiFeO6 (LxSTF, x = 0,0.1, 0.2和0.3)双钙钛矿二氧化碳(CO2)电解性能的改善。镧的掺杂不仅使立方相钙钛矿氧化物的晶格膨胀,而且显著增加了表面氧的含量。与原Sr2TiFeO6 (STF)钙钛矿氧化物相比,La0.1Sr1.9TiFeO6 (LSTF01)材料的氧空位浓度和CO2吸附能力均有显著提高。电化学分析表明,La元素的掺杂促进了氧离子的传导过程,有利于CO2还原反应(CO2RR)中CO2的吸附,使得LSTF01材料在开路电压下的极化电阻(Rp)最低为0.70 Ω·cm2,在800℃时的峰值电流密度最高为0.95 A·cm-2。这项工作为优化SOEC燃料电极材料提供了一个非常有效的策略来调节氧空位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信