Construction of multifunctional composite hydrogels via zwitterionic osmosis, the Hofmeister effect, and metal complexation for flexible sensors

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Qiuyan Luo, Siyu Yang, Zewen Wu, Juguo Dai, Meng Wang, Yiting Xu, Lizong Dai
{"title":"Construction of multifunctional composite hydrogels via zwitterionic osmosis, the Hofmeister effect, and metal complexation for flexible sensors","authors":"Qiuyan Luo,&nbsp;Siyu Yang,&nbsp;Zewen Wu,&nbsp;Juguo Dai,&nbsp;Meng Wang,&nbsp;Yiting Xu,&nbsp;Lizong Dai","doi":"10.1016/j.compscitech.2025.111138","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogel-based flexible sensors have emerged as a prominent research focus within the scientific research. However, effectively balancing the electrical conductivity and mechanical properties of hydrogels presents significant challenges. In this study, a polyacrylamide/gelatin/cellulose composite hydrogel (PGC) scaffold was initially synthesized, followed by immersion in a solution of betaine and zinc sulfate, and a multifunctional composite hydrogel (PGC-BZn) with excellent mechanical properties and electrical conductivity was successfully prepared through multi-scale synergistic interactions. The results indicate that the Hofmeister effect induced by sulfate ions, the metal complexation effect introduced by zinc ions, and the synergistic interactions of hydrogen bonding and electrostatic forces stemming from betaine penetration collectively confer notable characteristics to the composite hydrogel, including high transparency (70 %), remarkable stretchability (∼411 %), good conductivity (43.1 mS/m), outstanding freeze resistance (−27.9 °C), excellent antibacterial activity, and superior moisture retention. The strain sensors constructed from the PGC-BZn composite hydrogel demonstrated high sensitivity (GF = 5.891), a broad sensing detection range (0 %–450 %), as well as rapid response times and good cyclic stability. This research presents a simple and versatile method for the preparation of multifunctional composite hydrogels, with potential applicability to other salts, zwitterions, and polymer systems. This innovative approach offers new perspectives for the construction of multifunctional composite hydrogels, contributing to the advancement of flexible sensor technology.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"265 ","pages":"Article 111138"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026635382500106X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogel-based flexible sensors have emerged as a prominent research focus within the scientific research. However, effectively balancing the electrical conductivity and mechanical properties of hydrogels presents significant challenges. In this study, a polyacrylamide/gelatin/cellulose composite hydrogel (PGC) scaffold was initially synthesized, followed by immersion in a solution of betaine and zinc sulfate, and a multifunctional composite hydrogel (PGC-BZn) with excellent mechanical properties and electrical conductivity was successfully prepared through multi-scale synergistic interactions. The results indicate that the Hofmeister effect induced by sulfate ions, the metal complexation effect introduced by zinc ions, and the synergistic interactions of hydrogen bonding and electrostatic forces stemming from betaine penetration collectively confer notable characteristics to the composite hydrogel, including high transparency (70 %), remarkable stretchability (∼411 %), good conductivity (43.1 mS/m), outstanding freeze resistance (−27.9 °C), excellent antibacterial activity, and superior moisture retention. The strain sensors constructed from the PGC-BZn composite hydrogel demonstrated high sensitivity (GF = 5.891), a broad sensing detection range (0 %–450 %), as well as rapid response times and good cyclic stability. This research presents a simple and versatile method for the preparation of multifunctional composite hydrogels, with potential applicability to other salts, zwitterions, and polymer systems. This innovative approach offers new perspectives for the construction of multifunctional composite hydrogels, contributing to the advancement of flexible sensor technology.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信